Microelectronics: Circuit Analysis and Design
4th Edition
ISBN: 9780073380643
Author: Donald A. Neamen
Publisher: McGraw-Hill Companies, The
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem D11.59P
(a)
To determine
To draw: The complete circuit for the given specifications.
(b)
To determine
The value of open circuit differential mode voltage gain.
(c)
To determine
The value of the differential mode input resistance and the output resistance.
(d)
To determine
The value of the common mode input voltage range.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q.5/ Refer to the class AB amplifier in figure below operating with a single power supply:
a. Find the de parameters VB(Q1), VB(Q2), VE, IcQ, VCEQ(QI), VCEQ(Q2).
b. Assuming the input voltage is 10oVpp, calculate the power delivered to the load resistor.
c. What faults causing the following troubles:
1. A positive half-wave output signal
2. OV on both bases and emitters
3. No output: emitter voltage =15V
4. Crossover distortion on the output.
Vcc
+15 V
R
1.0 kN
C3
C2
D2
Q2
RL
V
75 N
1.0 kN
Q: For the amplifier characteristics shown in the Figure:
1-What is the bias configuration for the circuit shown in Figure b.
2-Determin Vcc, VCE (cutoff), Ic(sat), RB, RC, B for bias configuration circuit shown in
Figure b.
3-Calculat the Q-point levels VCEQ and VCBQ.
Ver
c (mA)
Re
10 uF
10 F
Opoint Iao 42uA
24V Ver
Class B Amplifier
q1)If the input is 7.5Vp-p...DATA COLLECTION: What is the IL(peak)?
a)7mA
6)mA
5)mA
4)mA
q2) DATA COLLECTION: What is the Idc?
a)3.84
b)4.82
c)3.82mA
d)1.82mA
q3)DATA COLLECTION: What is the input power in DC?
Power input = 48.45mW
Power input = 45.48mW
Power input = 44.58mW
Power input = 45.84mW
q4) DATA COLLECTION: What is the output power in AC?
a)18mW
b)81mW
c)11.8mW
d)18.9mW
q5)DATA COLLECTION: What is the power dissapated by each transistor?
a)35.1mW
b)53.1mW
c)15.3mW
d)13.5mW
q6)DATA COLLECTION: What is the efficiency of class B amplifier?
a)45%
b)40%
c)63%
d)33%
q7)
Chapter 11 Solutions
Microelectronics: Circuit Analysis and Design
Ch. 11 - The circuit parameters for the differential...Ch. 11 - Consider the de transfer characteristics shown in...Ch. 11 - Prob. 11.1CSPCh. 11 - Consider the diff-amp described in Example 11.3 ....Ch. 11 - Prob. 11.4EPCh. 11 - Prob. 11.1TYUCh. 11 - Prob. 11.2TYUCh. 11 - Assume the differential-mode gain of a diff-amp is...Ch. 11 - Prob. 11.5EPCh. 11 - Consider the diff-amp shown in Figure 11.15 ....
Ch. 11 - Prob. 11.7EPCh. 11 - Prob. 11.4TYUCh. 11 - Prob. 11.5TYUCh. 11 - The parameters of the diff-amp shown in Figure...Ch. 11 - For the differential amplifier in Figure 11.20,...Ch. 11 - The parameters of the circuit shown in Figure...Ch. 11 - The circuit parameters of the diff-amp shown in...Ch. 11 - Consider the differential amplifier in Figure...Ch. 11 - The diff-amp in Figure 11.19 is biased at IQ=100A....Ch. 11 - Prob. 11.10TYUCh. 11 - The diff-amp circuit in Figure 11.30 is biased at...Ch. 11 - Prob. 11.11EPCh. 11 - Prob. 11.12EPCh. 11 - Prob. 11.11TYUCh. 11 - Prob. 11.12TYUCh. 11 - Redesign the circuit in Figure 11.30 using a...Ch. 11 - Prob. 11.14TYUCh. 11 - Prob. 11.15TYUCh. 11 - Prob. 11.16TYUCh. 11 - Prob. 11.17TYUCh. 11 - Consider the Darlington pair Q6 and Q7 in Figure...Ch. 11 - Prob. 11.14EPCh. 11 - Consider the Darlington pair and emitter-follower...Ch. 11 - Prob. 11.19TYUCh. 11 - Prob. 11.15EPCh. 11 - Consider the simple bipolar op-amp circuit in...Ch. 11 - Prob. 11.17EPCh. 11 - Define differential-mode and common-mode input...Ch. 11 - Prob. 2RQCh. 11 - From the dc transfer characteristics,...Ch. 11 - What is meant by matched transistors and why are...Ch. 11 - Prob. 5RQCh. 11 - Explain how a common-mode output signal is...Ch. 11 - Define the common-mode rejection ratio, CMRR. What...Ch. 11 - What design criteria will yield a large value of...Ch. 11 - Prob. 9RQCh. 11 - Define differential-mode and common-mode input...Ch. 11 - Sketch the de transfer characteristics of a MOSFET...Ch. 11 - Sketch and describe the advantages of a MOSFET...Ch. 11 - Prob. 13RQCh. 11 - Prob. 14RQCh. 11 - Describe the loading effects of connecting a...Ch. 11 - Prob. 16RQCh. 11 - Prob. 17RQCh. 11 - Prob. 18RQCh. 11 - (a) A differential-amplifier has a...Ch. 11 - Prob. 11.2PCh. 11 - Consider the differential amplifier shown in...Ch. 11 - Prob. 11.4PCh. 11 - Prob. D11.5PCh. 11 - The diff-amp in Figure 11.3 of the text has...Ch. 11 - The diff-amp configuration shown in Figure P11.7...Ch. 11 - Consider the circuit in Figure P11.8, with...Ch. 11 - The transistor parameters for the circuit in...Ch. 11 - Prob. 11.10PCh. 11 - Prob. 11.11PCh. 11 - The circuit and transistor parameters for the...Ch. 11 - Prob. 11.13PCh. 11 - Consider the differential amplifier shown in...Ch. 11 - Consider the circuit in Figure P11.15. The...Ch. 11 - Prob. 11.16PCh. 11 - Prob. 11.17PCh. 11 - For the diff-amp in Figure 11.2, determine the...Ch. 11 - Prob. 11.19PCh. 11 - Prob. D11.20PCh. 11 - Prob. 11.21PCh. 11 - The circuit parameters of the diff-amp shown in...Ch. 11 - Consider the circuit in Figure P11.23. Assume the...Ch. 11 - Prob. 11.24PCh. 11 - Consider the small-signal equivalent circuit of...Ch. 11 - Prob. D11.26PCh. 11 - Prob. 11.27PCh. 11 - A diff-amp is biased with a constant-current...Ch. 11 - The transistor parameters for the circuit shown in...Ch. 11 - Prob. D11.30PCh. 11 - For the differential amplifier in Figure P 11.31...Ch. 11 - Prob. 11.32PCh. 11 - Prob. 11.33PCh. 11 - Prob. 11.34PCh. 11 - Prob. 11.35PCh. 11 - Prob. 11.36PCh. 11 - Consider the normalized de transfer...Ch. 11 - Prob. 11.38PCh. 11 - Consider the circuit shown in Figure P 11.39 . The...Ch. 11 - Prob. 11.40PCh. 11 - Prob. 11.41PCh. 11 - Prob. 11.42PCh. 11 - Prob. 11.43PCh. 11 - Prob. D11.44PCh. 11 - Prob. D11.45PCh. 11 - Prob. 11.46PCh. 11 - Consider the circuit shown in Figure P 11.47 ....Ch. 11 - Prob. 11.48PCh. 11 - Prob. 11.49PCh. 11 - Prob. 11.50PCh. 11 - Consider the MOSFET diff-amp with the...Ch. 11 - Consider the bridge circuit and diff-amp described...Ch. 11 - Prob. D11.53PCh. 11 - Prob. 11.54PCh. 11 - Prob. 11.55PCh. 11 - Consider the JFET diff-amp shown in Figure P11.56....Ch. 11 - Prob. 11.57PCh. 11 - Prob. 11.58PCh. 11 - Prob. D11.59PCh. 11 - The differential amplifier shown in Figure P 11.60...Ch. 11 - Prob. 11.61PCh. 11 - Consider the diff-amp shown in Figure P 11.62 ....Ch. 11 - Prob. 11.63PCh. 11 - The differential amplifier in Figure P11.64 has a...Ch. 11 - Prob. 11.65PCh. 11 - Consider the diff-amp with active load in Figure...Ch. 11 - The diff-amp in Figure P 11.67 has a...Ch. 11 - Consider the diff-amp in Figure P11.68. The PMOS...Ch. 11 - Prob. 11.69PCh. 11 - Prob. 11.70PCh. 11 - Prob. D11.71PCh. 11 - Prob. D11.72PCh. 11 - An all-CMOS diff-amp, including the current source...Ch. 11 - Prob. D11.74PCh. 11 - Consider the fully cascoded diff-amp in Figure...Ch. 11 - Consider the diff-amp that was shown in Figure...Ch. 11 - Prob. 11.77PCh. 11 - Prob. 11.78PCh. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Consider the BiCMOS diff-amp in Figure 11.44 ,...Ch. 11 - The BiCMOS circuit shown in Figure P11.82 is...Ch. 11 - Prob. 11.83PCh. 11 - Prob. 11.84PCh. 11 - For the circuit shown in Figure P11.85, determine...Ch. 11 - The output stage in the circuit shown in Figure P...Ch. 11 - Prob. 11.87PCh. 11 - Consider the circuit in Figure P11.88. The bias...Ch. 11 - Prob. 11.89PCh. 11 - Consider the multistage bipolar circuit in Figure...Ch. 11 - Prob. D11.91PCh. 11 - Prob. 11.92PCh. 11 - For the transistors in the circuit in Figure...Ch. 11 - Prob. 11.94PCh. 11 - Prob. 11.95PCh. 11 - Prob. 11.96PCh. 11 - Consider the diff-amp in Figure 11.55 . The...Ch. 11 - The transistor parameters for the circuit in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (1) Describe in detail the relative advantages of Class A and Class B amplifiers. In what types of circuits would Class B be advantageous over Class A (1I) With the aid of signal diagrams, describe two forms of distortion you would expect to observe on an output signal of a Class B amplifier. (III) Describe in circuit terms the advantages of a Class AB amplifier.arrow_forward"Below is a small signal equivalent circuit model considering the early effect of the BJT. Find the input resistance, output resistance, and voltage gain." Rout Rc R gm Ube R.R re ± Vi RE Voarrow_forwardQ.5/ Refer to the class AB amplifier in figure below operating with a single power supply:a. Find the dc parameters VB(Q1), VB(Q2), VE, ICQ, VCEQ(Q1), VCEQ(Q2).b. Assuming the input voltage is 10Vpp, calculate the power delivered to the load resistor.c. What faults causing the following troubles:1. A positive half-wave output signal2. 0V on both bases and emitters3. No output: emitter voltage =15V4. Crossover distortion on the output.arrow_forward
- Using the characteristic curve (please refer to the uploaded characteristic curve) of the NPN transistor of the class A Series - Fed Amplifier, shown in Figure 1 belowarrow_forwardIt is connected to the input of a transistor (BJT) amplifier circuit with a gain of "-50" with a peak value of 100mV. a sine sign is applied a) Draw the circuit. b) Underline the input and output voltages by specifying their values.arrow_forwardCorrect the sentence: The aim of using coupling in multistage transistor amplifiers is to transfer DC output of one stage to the input of the next .stage and to isolate the d.c. conditions of one stage from the next stagearrow_forward
- Draw the DC and AC load line for a transistor amplifier circuit shown in Figure, also describe the optimum operating Point for the given values as follows: Rc = 10 KQ ; RL=20 KQ and V cc = 20 V +Vcc Ic Rc Cc Cc V. out R1 Vin wwwarrow_forwardQUESTION 10: The circuit parameters for diff-amp shown in Figure 11.30 are V* = 6 V, V = -6 V, and Io = 0.45 mA. The transistor parameters are ß = 74, V₁1 = V42 = 115 V₂ V 43 V 44 = 90 V, and V45 = ∞0. Determine the open-circuit differential-mode voltage gain. What is the output resistance of the diff-amp? Find the value of load resistance R₁ that reduces the differential-mode gain to 71 percent of the open-circuit value. Ad (open circuit) Format: 7842.2636277565 R₂ (kn) Format: 429.43075670268 Format: 672.96782467086 R₁ (kn) ibl iz i₁ 8mºd 2 V+ 25 V- i₂ = 8m'd 2 24 2₂ Signal ground V- Figure 11.30 Cc 8md 2 -Ove RL Sning Toolarrow_forward1. Design a circuit to convert from voltage to current using an operational amplifier. The practical values of voltage should varies from 1V to 5V to obtain the output current such that minimum current should be 4mA and maximum current to be 20 mA. 2. Clearly outline the detailed design procedure including all the assumptions made in the report including cost analysis.arrow_forward
- will upvote if answered allarrow_forwardExercise 1:-arrow_forward1. N-channel enhancement MOSFET control voltage is applied at the controlling the current that is the drain terminal Select one: a. source, entering b. gate, entering C. drain, entering d. source, leaving e. gate, leaving f. drain, leaving 2. In a common source amplifier, the input is fed to the while the output is taken from the Select one: a. source, gate b. source, drain C. gate, source d. gate, drain e. drain, source f. drain, gate 3. In the saturation region of a MOSFET, choose all of the equations that apply (Hint: there are 3) Select one or more: a. VGS >= VTH b. VGS = VGS- VTH g. VDSVGS- VTH ID-k[(2(VGS-VTH)VDS-VDS²]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Differential Amplifiers Made Easy; Author: The AudioPhool;https://www.youtube.com/watch?v=Mcxpn2HMgtU;License: Standard Youtube License