Microelectronics: Circuit Analysis and Design
4th Edition
ISBN: 9780073380643
Author: Donald A. Neamen
Publisher: McGraw-Hill Companies, The
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 11.69P
a.
To determine
The output resistance looking into the output of the differential amplifier circuit.
b.
To determine
The open circuit differential-mode voltage gain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
11.13 The i-v characteristic of an n-channel
enhancement MOSFET is shown in Figure P11.13(a);
a standard amplifier circuit based on the n-channel
MOSFET is shown in Figure P11.13(b). Determine the
quiescent current ino and drain-to-source voltage vs
2.0
I= 25°C
1.8
1.6
Vas10 V-
-9V-
1.4
1.2
8V-
1.0
0.8
7V-
0.6
0.4
5 V=
0.2
3 V-
1.0
2.0
3.0
4.0
5.0
6.0 7.0
8.0
9.0
10
Drain-source voltage vps. V
(a)
Rp
VGD
VDD
VGS
Va
Drain current ip, A
Q1.
(a)
Consider the amplifier circuit in Figure Q1(a). Given the following:
RI = 100 k2
R2 = 56 kN
Rc =2 k2
Vcc = +8 V
Assume the transistor has B = 100 and VBE(on) = 0.7 V. You may neglect Early
effect and use VT = 26 mV.
(i)
Draw the DC equivalent circuit, then determine Iç and VCE.
Draw the AC equivalent circuit using re model. Based on this, determine
the parameters Av, Rin and Rout.
(ii)
Vcc
Rc
R1
R2
C3
Vout
C2
Ci
Vin
Figure Q1(a)
QUESTION 2: The differential amplifier in Figure P11.4 is biased with a three-transistor current source. The
transistor parameters: B = 85 , VBE(on) = 0.7 V, and V= 0.
Determine a new value of R1 such that VCE4 = 1.3 V. What are the values of Ic4, Ic2, and I4?
Ic4 (mA)
Format : 4.2
Ic2 (mA)
Format : 8.382
I (mA)
Format : 5.576
R1 (kN)
Format : 5.969
+5 V
8.5 k2
2 k2
2 kQ
Q4 VCE4
Qs
Q3
Q2 VCE2
-5 V
Figure P11.4
ww
Chapter 11 Solutions
Microelectronics: Circuit Analysis and Design
Ch. 11 - The circuit parameters for the differential...Ch. 11 - Consider the de transfer characteristics shown in...Ch. 11 - Prob. 11.1CSPCh. 11 - Consider the diff-amp described in Example 11.3 ....Ch. 11 - Prob. 11.4EPCh. 11 - Prob. 11.1TYUCh. 11 - Prob. 11.2TYUCh. 11 - Assume the differential-mode gain of a diff-amp is...Ch. 11 - Prob. 11.5EPCh. 11 - Consider the diff-amp shown in Figure 11.15 ....
Ch. 11 - Prob. 11.7EPCh. 11 - Prob. 11.4TYUCh. 11 - Prob. 11.5TYUCh. 11 - The parameters of the diff-amp shown in Figure...Ch. 11 - For the differential amplifier in Figure 11.20,...Ch. 11 - The parameters of the circuit shown in Figure...Ch. 11 - The circuit parameters of the diff-amp shown in...Ch. 11 - Consider the differential amplifier in Figure...Ch. 11 - The diff-amp in Figure 11.19 is biased at IQ=100A....Ch. 11 - Prob. 11.10TYUCh. 11 - The diff-amp circuit in Figure 11.30 is biased at...Ch. 11 - Prob. 11.11EPCh. 11 - Prob. 11.12EPCh. 11 - Prob. 11.11TYUCh. 11 - Prob. 11.12TYUCh. 11 - Redesign the circuit in Figure 11.30 using a...Ch. 11 - Prob. 11.14TYUCh. 11 - Prob. 11.15TYUCh. 11 - Prob. 11.16TYUCh. 11 - Prob. 11.17TYUCh. 11 - Consider the Darlington pair Q6 and Q7 in Figure...Ch. 11 - Prob. 11.14EPCh. 11 - Consider the Darlington pair and emitter-follower...Ch. 11 - Prob. 11.19TYUCh. 11 - Prob. 11.15EPCh. 11 - Consider the simple bipolar op-amp circuit in...Ch. 11 - Prob. 11.17EPCh. 11 - Define differential-mode and common-mode input...Ch. 11 - Prob. 2RQCh. 11 - From the dc transfer characteristics,...Ch. 11 - What is meant by matched transistors and why are...Ch. 11 - Prob. 5RQCh. 11 - Explain how a common-mode output signal is...Ch. 11 - Define the common-mode rejection ratio, CMRR. What...Ch. 11 - What design criteria will yield a large value of...Ch. 11 - Prob. 9RQCh. 11 - Define differential-mode and common-mode input...Ch. 11 - Sketch the de transfer characteristics of a MOSFET...Ch. 11 - Sketch and describe the advantages of a MOSFET...Ch. 11 - Prob. 13RQCh. 11 - Prob. 14RQCh. 11 - Describe the loading effects of connecting a...Ch. 11 - Prob. 16RQCh. 11 - Prob. 17RQCh. 11 - Prob. 18RQCh. 11 - (a) A differential-amplifier has a...Ch. 11 - Prob. 11.2PCh. 11 - Consider the differential amplifier shown in...Ch. 11 - Prob. 11.4PCh. 11 - Prob. D11.5PCh. 11 - The diff-amp in Figure 11.3 of the text has...Ch. 11 - The diff-amp configuration shown in Figure P11.7...Ch. 11 - Consider the circuit in Figure P11.8, with...Ch. 11 - The transistor parameters for the circuit in...Ch. 11 - Prob. 11.10PCh. 11 - Prob. 11.11PCh. 11 - The circuit and transistor parameters for the...Ch. 11 - Prob. 11.13PCh. 11 - Consider the differential amplifier shown in...Ch. 11 - Consider the circuit in Figure P11.15. The...Ch. 11 - Prob. 11.16PCh. 11 - Prob. 11.17PCh. 11 - For the diff-amp in Figure 11.2, determine the...Ch. 11 - Prob. 11.19PCh. 11 - Prob. D11.20PCh. 11 - Prob. 11.21PCh. 11 - The circuit parameters of the diff-amp shown in...Ch. 11 - Consider the circuit in Figure P11.23. Assume the...Ch. 11 - Prob. 11.24PCh. 11 - Consider the small-signal equivalent circuit of...Ch. 11 - Prob. D11.26PCh. 11 - Prob. 11.27PCh. 11 - A diff-amp is biased with a constant-current...Ch. 11 - The transistor parameters for the circuit shown in...Ch. 11 - Prob. D11.30PCh. 11 - For the differential amplifier in Figure P 11.31...Ch. 11 - Prob. 11.32PCh. 11 - Prob. 11.33PCh. 11 - Prob. 11.34PCh. 11 - Prob. 11.35PCh. 11 - Prob. 11.36PCh. 11 - Consider the normalized de transfer...Ch. 11 - Prob. 11.38PCh. 11 - Consider the circuit shown in Figure P 11.39 . The...Ch. 11 - Prob. 11.40PCh. 11 - Prob. 11.41PCh. 11 - Prob. 11.42PCh. 11 - Prob. 11.43PCh. 11 - Prob. D11.44PCh. 11 - Prob. D11.45PCh. 11 - Prob. 11.46PCh. 11 - Consider the circuit shown in Figure P 11.47 ....Ch. 11 - Prob. 11.48PCh. 11 - Prob. 11.49PCh. 11 - Prob. 11.50PCh. 11 - Consider the MOSFET diff-amp with the...Ch. 11 - Consider the bridge circuit and diff-amp described...Ch. 11 - Prob. D11.53PCh. 11 - Prob. 11.54PCh. 11 - Prob. 11.55PCh. 11 - Consider the JFET diff-amp shown in Figure P11.56....Ch. 11 - Prob. 11.57PCh. 11 - Prob. 11.58PCh. 11 - Prob. D11.59PCh. 11 - The differential amplifier shown in Figure P 11.60...Ch. 11 - Prob. 11.61PCh. 11 - Consider the diff-amp shown in Figure P 11.62 ....Ch. 11 - Prob. 11.63PCh. 11 - The differential amplifier in Figure P11.64 has a...Ch. 11 - Prob. 11.65PCh. 11 - Consider the diff-amp with active load in Figure...Ch. 11 - The diff-amp in Figure P 11.67 has a...Ch. 11 - Consider the diff-amp in Figure P11.68. The PMOS...Ch. 11 - Prob. 11.69PCh. 11 - Prob. 11.70PCh. 11 - Prob. D11.71PCh. 11 - Prob. D11.72PCh. 11 - An all-CMOS diff-amp, including the current source...Ch. 11 - Prob. D11.74PCh. 11 - Consider the fully cascoded diff-amp in Figure...Ch. 11 - Consider the diff-amp that was shown in Figure...Ch. 11 - Prob. 11.77PCh. 11 - Prob. 11.78PCh. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Consider the BiCMOS diff-amp in Figure 11.44 ,...Ch. 11 - The BiCMOS circuit shown in Figure P11.82 is...Ch. 11 - Prob. 11.83PCh. 11 - Prob. 11.84PCh. 11 - For the circuit shown in Figure P11.85, determine...Ch. 11 - The output stage in the circuit shown in Figure P...Ch. 11 - Prob. 11.87PCh. 11 - Consider the circuit in Figure P11.88. The bias...Ch. 11 - Prob. 11.89PCh. 11 - Consider the multistage bipolar circuit in Figure...Ch. 11 - Prob. D11.91PCh. 11 - Prob. 11.92PCh. 11 - For the transistors in the circuit in Figure...Ch. 11 - Prob. 11.94PCh. 11 - Prob. 11.95PCh. 11 - Prob. 11.96PCh. 11 - Consider the diff-amp in Figure 11.55 . The...Ch. 11 - The transistor parameters for the circuit in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The transistor parameters for the circuit in Figure P11.9 are: B = 100, VBE (On) = 0.7 V, and VA = ∞o. (a) Determine RE such that IE = 150 μΑ. (b) Find Ad, Acm, and CMRRB for a one-sided output at vo2. (c) Determine the differential- and common-mode input resistances. Rc-50 k Rg = 0.5 kΩ www VI www 21 Figure P11.9 +10 V VOLVO2 IE RE -10 V ? Rc = 50 kΩ 22 Rg = 0.5 kΩ ww S'arrow_forwardQUESTION 10: The circuit parameters for diff-amp shown in Figure 11.30 are V* = 6 V, V = -6 V, and Io = 0.45 mA. The transistor parameters are ß = 74, V₁1 = V42 = 115 V₂ V 43 V 44 = 90 V, and V45 = ∞0. Determine the open-circuit differential-mode voltage gain. What is the output resistance of the diff-amp? Find the value of load resistance R₁ that reduces the differential-mode gain to 71 percent of the open-circuit value. Ad (open circuit) Format: 7842.2636277565 R₂ (kn) Format: 429.43075670268 Format: 672.96782467086 R₁ (kn) ibl iz i₁ 8mºd 2 V+ 25 V- i₂ = 8m'd 2 24 2₂ Signal ground V- Figure 11.30 Cc 8md 2 -Ove RL Sning Toolarrow_forwardQUESTION 3: The diff-amp configuration shown in Figure 11.7 is biased at 3.3 V and -3.3 V. The maximum power dissipation in the entire circuit is to be no more than 1.2 mW when v₁ = v₂ = 0. The available transistors have parameters: ß = 130, VBE(on) = 0.71 V, and VA = 00. Design the circuit to produce the maximum possible differential-mode voltage gain, but such that the common-mode input voltage can be within the range - 0.91 < VCM<0.91 V and the transistors are still biased in the forward-active region. What is the value of Ad? R₁ (kQ) Format: 67.42 Rc (kn) Format 48.55 8m (mA/V) Format: 8.3846 Ad Format: 66.55 V+ R₁ IC₁Rc Ic₂Rc ww 23 1010 24 Figure 11.7 2₂ -0 U₂ ICAarrow_forward
- Exercise 1:-arrow_forward19 The circuit of Figure P11.19 is a Class A amplifier. a. Determine the output current for the given biased audio tone input, Vc = 10+0.1 cos(500t) V. Let K = 2mA/V? and Vr = 3 V. b. Determine the output voltage. c. Determine the voltage gain of the cos(5007) signal. d. Determine the DC power consumption of the resistor and the MOSFET. 15 V 602 outarrow_forwardSketch DC and ac equivalent circuits and theoretically Analyze DC and ac analysis of a Single Stage JFET Common-Source Amplifier Circuit a. DC Equivalent Circuit b. ac Equivalent Circuit C. DC Analysis d. ac Analysisarrow_forward
- Only a)arrow_forwardFigure 4 shows a collector-feedback bias circuit. By assuming ideal cut-off and saturationconditions: i. Evaluate the suitability of the Q-point position of both circuits on the DC load line at B dc= 100ii. Evaluate the stability of Q-point produced by the circuits if the value of B dc decreases from 100 to 80 for both circuits.arrow_forwardLecturer Karrar Al bayat = Consider the circuit shown in Figure below with transistor parameters ß 120 and VA =00. (a) Determine the small-signal parameters gm, I, and to for both transistors. (b) Plot the dc and ac load lines for both transistors. (c) Determine the overall small-signal voltage gain Av = vo/vs. (d) Determine the input resistance R₁, and the output resistance R.. (e) Determine the maximum Vcc=+12 V undistorted swing in the output voltage. < R₁ = < 67.3 ΚΩ R₂ = Σ 15 ΚΩ Ro R₂ = R₁= 12.7 K 345 ΚΩ Ris Co RC1 = ΤΟ ΚΩ "98 21 REL= <2k2=CE 22 CC3 RE2= RL= 1.6 kΩ < 250 Ω -OUarrow_forward
- Consider the differential amplifier shown in Figure P11.3 with transistor parameters B = 150, VBe(on) = 0.7 V, and VA = 0∞. (a) Design the circuit such that the Q-point values are Icı = Ic2 = 100 µA and voi = vo2 = 1.2 V for v = vz = 0. (b) Draw the de load line and plot the Q-point for transistor Q2. (c) What are the maximum and minimum values of the common-mode input voltage? %3D +3 V RCarrow_forwardConsider class-A emitter follower circuit shown in the figure below. The circuit parameters are V+ = 24 V, V- = -24 V, and RL = 2000. The transistor parameters are B = 50, VBE(on) = 0.7 V, and VcE(sat) = 0.2 V. The output voltage is to vary between +20 V and -20 V. The minimum current in Q1 is to be iej = 20 mA. For vo = 0, find the dissipated in the first transistor Qr. power RL wwliarrow_forwardIn the circuit given in the figure, Vcc = 15 V, R1 = R2 = 10kΩ, RE = 1KΩ, RL = 0.5kΩ and transistor parameters are given as VBE = 0.7V, ßdc = ß0 = 100. a. Calculate the values of DC bias currents and voltages (IBQ, ICQ and VCEQ). b. Draw the small signal equivalent circuit of the circuit using the hybrid model of the transistor. c. Derive the input impedance expression of the circuit and calculate its value. d. Derive the AVI and AVG voltage gain expressions and calculate their values. e. Derive the current gain expression AI = I0 / Ii and calculate its value. Compare this value you have calculated with the value you will calculate using the expression Aİ = Zi AVI / RL.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
CMOS Tech: NMOS and PMOS Transistors in CMOS Inverter (3-D View); Author: G Chang;https://www.youtube.com/watch?v=oSrUsM0hoPs;License: Standard Youtube License