Organic Chemistry: Structure and Function
Organic Chemistry: Structure and Function
8th Edition
ISBN: 9781319079451
Author: K. Peter C. Vollhardt, Neil E. Schore
Publisher: W. H. Freeman
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7, Problem 45P

(a)

Interpretation Introduction

Interpretation: The major organic products that would result from the reaction of 1-bromobutane with KCl in DMF along with the dominant pathway adopted among E1 , E2 , SN1 or SN2 should be predicted.

Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or E1 .

Three principal factors that affect the competition between substitution and elimination: basicity of the nucleophile, steric hindrance in the alkyl halide, and steric bulk around the nucleophilic atom. The bases such as hydroxide ion, alkoxide ion, amide ion, tertiary amines are highly strong bases that favor elimination over substitution. On the other hand bases such as methanol, halides, alkyl phosphines, azides, cyanides, acetates are regarded as weak bases and they form substitution products in greater ratios than elimination products.

Analogous to the case that strong nucleophiles are more favored to react via SN2 the pathway, the greater concentration of strong bases are more favored for single-step elimination E2 pathway. Such strong bases include hydroxide ion or alkoxide ions. The reason of predominance of E2 elimination is that strong bases have high probabilities and high rates to abstract hydrogen from carbon adjacent to the carbocation.

(b)

Interpretation Introduction

Interpretation: The major organic products that would result from the reaction of 1-bromobutane with KI in DMF along with the dominant pathway adopted among E1 , E2 , SN1 or SN2 should be predicted.

Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or E1 .

Analogous to the case that strong nucleophiles are more favored to react via SN2 the pathway, the greater concentration of strong bases are more favored for single-step elimination E2 pathway. Such strong bases include hydroxide ion or alkoxide ions. The reason of predominance of E2 elimination is that strong bases have high probabilities and high rates to abstract hydrogen from carbon adjacent to the carbocation.

(c)

Interpretation Introduction

Interpretation: The major organic products that would result from the reaction of 1-bromobutane with KCl in CH3NO2 along with the dominant pathway adopted among E1 , E2 , SN1 or SN2 should be predicted.

Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or E1 .

Analogous to the case that strong nucleophiles are more favored to react via SN2 the pathway, the greater concentration of strong bases are more favored for single-step elimination E2 pathway. Such strong bases include hydroxide ion or alkoxide ions. The reason of predominance of E2 elimination is that strong bases have high probabilities and high rates to abstract hydrogen from carbon adjacent to the carbocation.

(d)

Interpretation Introduction

Interpretation: The major organic products that would result from the reaction of 1-bromobutane with ammonia and ethanol along with the dominant pathway adopted among E1 , E2 , SN1 or SN2 should be predicted.

Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or E1 .

Analogous to the case that strong nucleophiles are more favored to react via SN2 the pathway, the greater concentration of strong bases are more favored for single-step elimination E2 pathway. Such strong bases include hydroxide ion or alkoxide ions. The reason of predominance of E2 elimination is that strong bases have high probabilities and high rates to abstract hydrogen from carbon adjacent to the carbocation.

(e)

Interpretation Introduction

Interpretation: The major organic products that would result from the reaction of 1-bromobutane with NaOCH2CH3 in CH3CH2OH along with the dominant pathway adopted among E1 , E2 , SN1 or SN2 should be predicted.

Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or E1 .

Analogous to the case that strong nucleophiles are more favored to react via SN2 the pathway, the greater concentration of strong bases are more favored for single-step elimination E2 pathway. Such strong bases include hydroxide ion or alkoxide ions. The reason of predominance of E2 elimination is that strong bases have high probabilities and high rates to abstract hydrogen from carbon adjacent to the carbocation.

(f)

Interpretation Introduction

Interpretation: The major organic products that would result from the reaction of 1-bromobutane in CH3CH2OH along with the dominant pathway adopted among E1 , E2 , SN1 or SN2 should be predicted.

Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or E1 .

Analogous to the case that strong nucleophiles are more favored to react via SN2 the pathway, the greater concentration of strong bases are more favored for single-step elimination E2 pathway. Such strong bases include hydroxide ion or alkoxide ions. The reason of predominance of E2 elimination is that strong bases have high probabilities and high rates to abstract hydrogen from carbon adjacent to the carbocation.

(g)

Interpretation Introduction

Interpretation: The major organic products that would result from the reaction of 1-bromobutane in CH3CH2OH along with the dominant pathway adopted among E1 , E2 , SN1 or SN2 should be predicted.

Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or E1 .

Analogous to the case that strong nucleophiles are more favored to react via SN2 the pathway, the greater concentration of strong bases are more favored for single-step elimination E2 pathway. Such strong bases include hydroxide ion or alkoxide ions. The reason of predominance of E2 elimination is that strong bases have high probabilities and high rates to abstract hydrogen from carbon adjacent to the carbocation.

(h)

Interpretation Introduction

Interpretation: The major organic products that would result from the reaction of 1-bromobutane with ( CH3)3P in CH3OH along with the dominant pathway adopted among E1 , E2 , SN1 or SN2 should be predicted.

Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or E1 .

Analogous to the case that strong nucleophiles are more favored to react via SN2 the pathway, the greater concentration of strong bases are more favored for single-step elimination E2 pathway. Such strong bases include hydroxide ion or alkoxide ions. The reason of predominance of E2 elimination is that strong bases have high probabilities and high rates to abstract hydrogen from carbon adjacent to the carbocation.

(i)

Interpretation Introduction

Interpretation: The major organic products that would result from the reaction of 1-bromobutane in CH3COOH along with the dominant pathway adopted among E1 , E2 , SN1 or SN2 should be predicted.

Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or E1 .

Analogous to the case that strong nucleophiles are more favored to react via SN2 the pathway, the greater concentration of strong bases are more favored for single-step elimination E2 pathway. Such strong bases include hydroxide ion or alkoxide ions. The reason forthe predominance of E2 elimination is that strong bases have high probabilities and high rates to abstract hydrogen from carbon adjacent to the carbocation.

Blurred answer
Students have asked these similar questions
Select the possible major product in the given reaction. 41. Dehydration of alcohols 42. Elimination of H-X in alkylhalides 43. Reaction of alcohols and carboxylic acids 44. Reduction of aldehydes 45. Substitution of reaction between ROH and SOCI, Choices: (A) 1 ROH (B) 2 ROH (C) 3 ROH (D) Alkene RCHO (E) (AB) RCOOH (AC) RCOR' (AD) RX Which of the following reagent (s) are needed in the following reactions? 46. Reduction of carboxylic acids to primary alcohols 47. Oxidation of primary alcohols to aldehydes 48. Reduction of ketones to secondary alcohols 49. Saponification of esters 50. Dehydration of alcohols Choices: aqueous NAOH and heat (B) Hạ in Pt (C) (A) H;O, H;SO, (D) H,SO, with heat (E) K,Cr,O, and H,So, (АB) LIAIH, (AC) PCC (AD) Tollens' reagent
10. The Wolff-Kishner reaction, in which an aldehyde or ketone is treated with NH2NH2 and KOH, is: a) an oxidation c) an SN2 reaction b) a reduction d) a hydration 11. Which of these is most likely to dissolve in 5% NaOH? a) 1-decanol b) decanal c) decanoic acid d) 2-decanone 12. The following compound forms a cyclic hemiacetal all by itself. Draw the structure of that hemiacetal.
Compound A reacts with the reagents shown in the image. Write the mechanism, step by step, for the formation of product B. Note that B has the molecular formula C14 H18 O.
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Coenzymes and cofactors; Author: CH15 SWAYAM Prabha IIT Madras;https://www.youtube.com/watch?v=bubY2Nm7hVM;License: Standard YouTube License, CC-BY
Aromaticity and Huckel's Rule; Author: Professor Dave Explains;https://www.youtube.com/watch?v=7-BguH4_WBQ;License: Standard Youtube License