Concept explainers
Answer the following descriptive questions
a. Write five properties of the element stiffness matrix.
b. Write five properties of the structural stiffness matrix.
c. Write five properties of the global stiffness matrix.
d. Will subdividing a truss element into many smaller elements improve the accuracy of the solution? Explain.
e. Explain when the element force
f. For a given spring element, explain why we cannot calculate nodal displacement
g. Explain what “striking the rows” and “striking the columns” are.
h. Once the global DOFs {Q} is solved, explain two methods of calculating nodal reaction forces.
i. Explain why we need to define the local coordinate in 2D truss element.
j. Explain how to determine the angle of 2D truss element.
k. When the connectivity of an element is changed from
I. For the bar with fixed two ends in figure 1.22, when temperature is increased by T, which of the following strains are not zero? Total strain, mechanical strain, or thermal strain. Describe the finite element model you would use for a thin slender bar pinned at both ends with a transverse (perpendicular to the bar) concentrated load applied at the middle. (i) Draw a figure to show the elements, loads, and boundary conditions. (2) What type of elements il1 you use?
a.
The properties description of the element stiffness matrix.
Explanation of Solution
Properties of stiffness matrix describes as shown below.
- In order of stiffness matrix shows the total Degree of freedoms (DOFs).
- In addition to the singular stiffness matrix also known as structure is unrestrained and rigid body movement.
- It includes the for an equilibrium set of nodal force for each column stiffness matrix is required single DOF. Its includes the Symmetric stiffness matrix signified the force-displacement are proportional to each other.
- It includes the Diagonal terms of the matrix are always positive force directed for left direction with not any displacement in right direction.
- Diagonal terms will be zero or negative for the structure is not stable or unstable condition.
b.
To find:The properties description of the structural stiffness matrix.
Explanation of Solution
Properties of structure stiffness matrix describes as shown below.
- Properties of structurestiffness matrix mainly describes that an order of structure stiffness matrix shows the structure of the totalDOFs.
- In addition to the singular structurestiffness matrix also known as structure is unrestrained and rigid body movement.
- Its includes the for an equilibrium set of nodal force for each column of structurestiffness matrix is required greater than single DOF.
- Its includes the Symmetric structurestiffness matrix signified the force-displacement are proportional to each other.
- Its includes the Diagonal terms of the matrix are always positive force directed for left direction with not any displacement in right direction. Diagonal terms will be zero or negative for the structure is not stable or unstable condition.
c.
To find:The properties description of the global stiffness matrix.
Explanation of Solution
Properties of structure stiffness matrix describes as shown below.
- The global and localterms signified the global and local coordinate systems which is used denoted the member of a system
- Its including with stiffness matrix associated member denotes the local stiffness matrix and also denotes the global stiffness matrix with overall mechanical system.
- It includes theprocess the collecting the global stiffness matrix used for solution of the finite element solution.
- Its includes the finite element mesh comprisesdiscrete element with using the nodes, element stiffness matrix for each element made distinctly,
- For the global matrix, element stiffness matrices of individual element are added to suitableplaces.
- Its includes each element depicted the two local nodes with convertible to the global node. Further the element, the matchingwith the global node numbers getting a matrix, which is maximum, and minimum global node numbers.
d.
To find: improvement justification of the truss element solution by Finite element method (FEM) method.
Explanation of Solution
The subdividing of a structure in to suitable number of lesserparts called as discretization. These smaller components are collected and process of bondingthe elements combined is called assemblage is further used to progress the accuracy of Finite element method.
In the order of polynomial estimate for all elements is kept constant and the numbers ofelements are increased. In numbers of elements are kept constant and the polynomial order guesstimate of element is amplified.
e.
To find:The element force condition of positive and negative characteristics discussed in the problem.
Explanation of Solution
For an equilibrium set of nodal force for each column stiffness matrix is required single Degree of freedoms. Symmetric stiffness matrix signified the force-displacement are proportional to each other. Diagonal terms of the matrix are always positive force directed for left direction with not any displacement in right direction. Diagonal terms will be zero or negative for the structure is not stable or unstable condition.
As the finite element mesh comprises discrete element with using the nodes, element stiffness matrix for each element made distinctly. For the global matrix, element stiffness matrices of individual element are added to suitable places. With each element depicted the two local nodes with convertible to the global node. Further the element, the matching with the global node numbers getting a matrix, which is maximum, and minimum global node numbers.
f.
To find:Nodal displacement for the nodal forces given condition shows in the problem.
Explanation of Solution
As the finite element comprises discrete element with mesh using the nodes, each element for the element stiffness matrix for made distinctly. For the global matrix further using each of the element stiffness matrices of individual element are added to suitable places. With each element depicted the two local nodes with convertible to the global node. Further the element, the matching with the global node numbers getting a matrix which is maximum and minimum global node numbers.
Displacement of the nodes is theunknown problem which solved with the use of the Displacement or stiffness method. Using with two methods, displacement method isNeeded to find the solution and also used for computer program for displayingin graphical form to the user.
g.
To find:The striking the rows and striking the column condition shown in the problem.
Explanation of Solution
The truss elements are shows the truss structure relatedorganizedwith the use of point joint by transmits for the axial force to element show a matrix with "strike-out lines" on some of its rows and columns.
Further methods are available for swapping every matrix fromglobal and local matrix change would be too time-consuming. In addition, FEM and other way to get the strikeout effect which resulting in a matrix consistent with the rest of the matrices.
h.
To find:The two methods of nodal reaction forces for the global matrix solution shown in the problem.
Explanation of Solution
Here using each type of the finite element has aexact structural shape which is linkedby the adjacent element with the nodal point or nodes. For the nodes, degrees of freedom are placed and forces act on the nodes element. The methods mainly shows for two method of nodal reaction forces for the global matrix solution shown in the problem.
i.
To find:Explanation of the local coordinate in the 2D truss element problem.
Explanation of Solution
Two dimensional elements shows the three or more nodes for the 2D plane and basic element used 2D studywhich is triangular element. Here using the Each type of the finite element has a exact structural shape which is linked by the adjacent element with the nodal point or nodes. For the nodes, degrees of freedom are placed and forces act on the nodes element. For an equilibrium set of nodal force for each column stiffness matrix is required single DOF. Symmetric stiffness matrix signified the force-displacement are proportional to each other. Diagonal terms of the matrix are always positive force directed for left direction with not any displacement in right direction. Diagonal terms will be zero or negative for the structure is not stable or unstable condition.
j.
To find:The examination of the angle of the 2D truss element shown in the problem.
Explanation of Solution
The points in which the wholeassembly are shown for coordinates system signified the global coordinate system and in the natural coordinate system only shows the point element using the number with dimensionless and unity magnitude, which very useful in assembling of stiffness matrices.
local conventionalfor an element or element level that change orientation of the element direction differs the element. Global conventional for the whole system that shows the same in direction for all elements with also the differently oriented.
k.
To find: connectivity of an element change condition and global matrix condition discussed in the problem.
Explanation of Solution
Here using the Each type of the finite element has a exact structural shape which is linked by the adjacent element with the nodal point or nodes. For the nodes, degrees of freedom are placed and forces act on the nodes element. The methods mainly shows for two method of nodal reaction forces for the global matrix solution shown in the problem.
l.
To find:Strain characteristics of the given bar with fixed condition shown in the problem.
Explanation of Solution
The strain state of strain normal to plane and the shear strains are taken to be zero with the Plane stress which the normal stress and shear stress that perpendicular to the plane finds zero.
Here using the Each type of the finite element has exact structural shape which is linked by the adjacent element with the nodal point or nodes. For the nodes, degrees of freedom are placed and forces act on the nodes element. The methods mainly show for two method of nodal reaction forces for the global matrix solution shown in the problem. local conventional for an element or element level that change orientation of the element direction differs the element. Global conventional for the whole system that shows the same in direction for all elements with also the differently oriented.
m.
To find: FEM model for the thin slender bar pinned condition for given load condition with given boundary condition shown in the problem.
Explanation of Solution
A differential equation describes a boundary value problem reliant on variable with BVP to progress the accuracy in the solution of FE method. And also polynomial estimate for all elements is kept constant and the No of elements are amplified.
Here using the Each type of the finite element has exact structural shape which is linked by the adjacent element with the nodal point or nodes. For the nodes, degrees of freedom are placed and forces act on the nodes element. The methods mainly show for two method of nodal reaction forces for the global matrix solution shown in the problem. local conventional for an element or element level that change orientation of the element direction differs the element. Global conventional for the whole system that shows the same in direction for all elements with also the differently oriented.
Want to see more full solutions like this?
Chapter 1 Solutions
Introduction To Finite Element Analysis And Design
- First monthly exam Gas dynamics Third stage Q1/Water at 15° C flow through a 300 mm diameter riveted steel pipe, E-3 mm with a head loss of 6 m in 300 m length. Determine the flow rate in pipe. Use moody chart. Q2/ Assume a car's exhaust system can be approximated as 14 ft long and 0.125 ft-diameter cast-iron pipe ( = 0.00085 ft) with the equivalent of (6) regular 90° flanged elbows (KL = 0.3) and a muffler. The muffler acts as a resistor with a loss coefficient of KL= 8.5. Determine the pressure at the beginning of the exhaust system (pl) if the flowrate is 0.10 cfs, and the exhaust has the same properties as air.(p = 1.74 × 10-3 slug/ft³, u= 4.7 x 10-7 lb.s/ft²) Use moody chart (1) MIDAS Kel=0.3 Q3/Liquid ammonia at -20°C is flowing through a 30 m long section of a 5 mm diameter copper tube(e = 1.5 × 10-6 m) at a rate of 0.15 kg/s. Determine the pressure drop and the head losses. .μ= 2.36 × 10-4 kg/m.s)p = 665.1 kg/m³arrow_forward2/Y Y+1 2Cp Q1/ Show that Cda Az x P1 mactual Cdf Af R/T₁ 2pf(P1-P2-zxgxpf) Q2/ A simple jet carburetor has to supply 5 Kg of air per minute. The air is at a pressure of 1.013 bar and a temperature of 27 °C. Calculate the throat diameter of the choke for air flow velocity of 90 m/sec. Take velocity coefficient to be 0.8. Assume isentropic flow and the flow to be compressible. Quiz/ Determine the air-fuel ratio supplied at 5000 m altitude by a carburetor which is adjusted to give an air-fuel ratio of 14:1 at sea level where air temperature is 27 °C and pressure is 1.013 bar. The temperature of air decreases with altitude as given by the expression The air pressure decreases with altitude as per relation h = 19200 log10 (1.013), where P is in bar. State any assumptions made. t = ts P 0.0065harrow_forward36 2) Use the method of MEMBERS to determine the true magnitude and direction of the forces in members1 and 2 of the frame shown below in Fig 3.2. 300lbs/ft member-1 member-2 30° Fig 3.2. https://brightspace.cuny.edu/d21/le/content/433117/viewContent/29873977/Viewarrow_forward
- Can you solve this for me?arrow_forward5670 mm The apartment in the ground floor of three floors building in Fig. in Baghdad city. The details of walls, roof, windows and door are shown. The window is a double glazing and air space thickness is 1.3cm Poorly Fitted-with Storm Sash with wood strip and storm window of 0.6 cm glass thickness. The thickness of door is 2.5 cm. The door is Poor Installation. There are two peoples in each room. The height of room is 280 cm. assume the indoor design conditions are 25°C DBT and 50 RH, and moisture content of 8 gw/kga. The moisture content of outdoor is 10.5 gw/kga. Calculate heat gain for living room : الشقة في الطابق الأرضي من مبنى ثلاثة طوابق في مدينة بغداد يظهر في مخطط الشقة تفاصيل الجدران والسقف والنوافذ والباب. النافذة عبارة عن زجاج مزدوج وسمك الفراغ الهوائي 1.3 سم ضعيف الاحكام مع ساتر حماية مع إطار خشبي والنافذة بسماكة زجاج 0.6 سم سماكة الباب 2.5 سم. الباب هو تركيب ضعيف هناك شخصان في كل غرفة. ارتفاع الغرفة 280 سم. افترض أن ظروف التصميم الداخلي هي DBT25 و R50 ، ومحتوى الرطوبة 8…arrow_forwardHow do i solve this problem?arrow_forward
- Q4/ A compressor is driven motor by mean of a flat belt of thickness 10 mm and a width of 250 mm. The motor pulley is 300 mm diameter and run at 900 rpm and the compressor pulley is 1500 mm diameter. The shaft center distance is 1.5 m. The angle of contact of the smaller pulley is 220° and on the larger pulley is 270°. The coefficient of friction between the belt and the small pulley is 0.3, and between the belt and the large pulley is 0.25. The maximum allowable belt stress is 2 MPa and the belt density is 970 kg/m³. (a) What is the power capacity of the drive and (b) If the small pulley replaced by V-grooved pulley of diameter 300 mm, grooved angle of 34° and the coefficient of friction between belt and grooved pulley is 0.35. What will be the power capacity in this case, assuming that the diameter of the large pulley remain the same of 1500 mm.arrow_forwardYou are tasked with designing a power drive system to transmit power between a motor and a conveyor belt in a manufacturing facility as illustrated in figure. The design must ensure efficient power transmission, reliability, and safety. Given the following specifications and constraints, design drive system for this application: Specifications: Motor Power: The electric motor provides 10 kW of power at 1,500 RPM. Output Speed: The output shaft should rotate at 150 rpm. Design Decisions: Transmission ratio: Determine the necessary drive ratio for the system. Shaft Diameter: Design the shafts for both the motor and the conveyor end. Material Selection: Choose appropriate materials for the gears, shafts. Bearings: Select suitable rolling element bearings. Constraints: Space Limitation: The available space for the gear drive system is limited to a 1-meter-long section. Attribute 4 of CEP Depth of knowledge required Fundamentals-based, first principles analytical approach…arrow_forward- | العنوان In non-continuous dieless drawing process for copper tube as shown in Fig. (1), take the following data: Do-20mm, to=3mm, D=12mm, ti/to=0.6 and v.-15mm/s. Calculate: (1) area reduction RA, (2) drawing velocity v. Knowing that: ti: final thickness V. Fig. (1) ofthrearrow_forward
- A direct extrusion operation produces the cross section shown in Fig. (2) from an aluminum billet whose diameter 160 mm and length - 700 mm. Determine the length of the extruded section at the end of the operation if the die angle -14° 60 X Fig. (2) Note: all dimensions in mm.arrow_forwardFor hot rolling processes, show that the average strain rate can be given as: = (1+5)√RdIn(+1)arrow_forward: +0 usão العنوان on to A vertical true centrifugal casting process is used to produce bushings that are 250 mm long and 200 mm in outside diameter. If the rotational speed during solidification is 500 rev/min, determine the inside radii at the top and bottom of the bushing if R-2R. Take: -9.81 mis ۲/۱ ostrararrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY