EBK MANUFACTURING PROCESSES FOR ENGINEE
EBK MANUFACTURING PROCESSES FOR ENGINEE
6th Edition
ISBN: 9780134425115
Author: Schmid
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 6.82P

(a)

To determine

The expression for average pressure in plain-strain compression with Tresca friction.

(a)

Expert Solution
Check Mark

Answer to Problem 6.82P

The expression for average pressure in plain-strain compression with Tresca friction is σy=Sy(1+ma2h) .

Explanation of Solution

The figure (1) shows the force analysis in forging method,

  EBK MANUFACTURING PROCESSES FOR ENGINEE, Chapter 6, Problem 6.82P , additional homework tip  1

Figure (1)

Using force balance in x-direction,

  (σ+dσx)h+2mkdxσxh=0

Here, m is the coefficient of Tresca friction, h is the height of the sample, k is the frictional stresses and σx is the stress in x-direction.

On solving the above equation,

  dσx=2mkhdxd σ x= 2mk hdxσx=2mkhx+c …… (1)

Applying the boundary conditions,

  x=aσx=0

The value of c can be calculated as,

  0=2mkah+cc=2mkah

The normal stress can be calculated by equation (1),

  σx=2mkhx+2mkahσx=2mkh(ax)

The condition for the die pressure is given as,

  σyσx=Sy

Here, σy is the stress in y-direction and Sy is the yield strength in plain strength.

Substitute the values of σx in above equation,

  σy2mkh(ax)=Syσy( S y 2)2mh(ax)=Syσy=Sy(1+mh( ax))

For x=0 ,

  σy=Sy(1+mah) …… (2)

For x=a ,

  σy=Sy …… (3)

Adding equation (2) and (3),

  σy=Sy(1+ma2h)

Conclusion:

Therefore, the expression for average pressure in plain-strain compression with Tresca friction is σy=Sy(1+ma2h) .

(b)

To determine

The expression for average pressure in plain-strain compression with sticking friction with m=1 .

(b)

Expert Solution
Check Mark

Answer to Problem 6.82P

The expression for average pressure in plain-strain compression with Sticking friction is σy=Sy(1+ma2h) .

Explanation of Solution

The figure (2) shows the force analysis in forging method,

  EBK MANUFACTURING PROCESSES FOR ENGINEE, Chapter 6, Problem 6.82P , additional homework tip  2

Figure (2)

Using force balance in x-direction,

  (σ+dσx)h+2mkdxσxh=0

Here, m is the coefficient of Tresca friction, h is the height of the sample, k is the frictional stresses and σx is the stress in x-direction.

On solving the above equation,

  dσx=2mkhdxd σ x= 2mk hdxσx=2mkhx+c …… (1)

Applying the boundary conditions,

  x=aσx=0

The value of c can be calculated as,

  0=2mkah+cc=2mkah

The normal stress can be calculated by equation (1),

  σx=2mkhx+2mkahσx=2mkh(ax)

The condition for the die pressure is given as,

  σyσx=Sy

Here, σy is the stress in y-direction and Sy is the yield strength in plain strength.

Substitute the values of σx in above equation,

  σy2mkh(ax)=Syσy( S y 2)2mh(ax)=Syσy=Sy(1+mh( ax))

For x=0 ,

  σy=Sy(1+mah) …… (2)

For x=a ,

  σy=Sy …… (3)

Adding equation (2) and (3),

  σy=Sy(1+ma2h)

For sticking friction m=1 .

  σy=Sy(1+a2h)

Conclusion:

Therefore, the expression for average pressure in plain-strain compression with Sticking friction is σy=Sy(1+a2h) .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Thickness of the plate is reduced from 40mm to 20mm by succesive cold rolling passes using identical rolls of diameter 600 mm. Assume that there is no change in width. If the coefficient of friction b/w the rolls and the workpiece is 0.1. Determine the minimum number of passes required?
Bar stock of initial diameter = 90 mm is drawn with a draft = 15 mm. The draw die has an entrance angle = 18°, and the coefficient of friction at the work‑die interface = 0.08. The metal behaves as a perfectly plastic material with yield stress = 105 MPa. Determine (a) area reduction, (b) draw stress, (c) draw force required for the operation, and (d) power to perform the operation if exit velocity = 1.0 m/min
A cylindrical workpiece of 100mm diameter and 150mm in height (Fig. 1) is upset (open die forged) at 1200° C to 100mm height disk (Fig. 2). Material of the workpiece is low carbon steel. A graphite lubricant reduces the friction to u=0.25. A press with 2-m/sec speeds is used to make this part. At 1200° C the material has the values for its C=48MPA and m=0.08 parameters Fig. 1 Height=150mm, Diameter=100mm Fig. 2 Height = 100mm, Diamete = ? mm (a) (b) (c) Determine the final diameter of the disk (see Fig. 2) Determine the true strain rate at the end of process. Calculate the flow stress at the end of the stroke.

Chapter 6 Solutions

EBK MANUFACTURING PROCESSES FOR ENGINEE

Ch. 6 - Prob. 6.11QCh. 6 - Prob. 6.12QCh. 6 - Prob. 6.13QCh. 6 - Prob. 6.14QCh. 6 - Prob. 6.15QCh. 6 - Prob. 6.16QCh. 6 - Prob. 6.17QCh. 6 - Prob. 6.18QCh. 6 - Prob. 6.19QCh. 6 - Prob. 6.20QCh. 6 - Prob. 6.21QCh. 6 - Prob. 6.22QCh. 6 - Prob. 6.23QCh. 6 - Prob. 6.24QCh. 6 - Prob. 6.25QCh. 6 - Prob. 6.26QCh. 6 - Prob. 6.27QCh. 6 - Prob. 6.28QCh. 6 - Prob. 6.29QCh. 6 - Prob. 6.30QCh. 6 - Prob. 6.31QCh. 6 - Prob. 6.32QCh. 6 - Prob. 6.33QCh. 6 - Prob. 6.34QCh. 6 - Prob. 6.35QCh. 6 - Prob. 6.36QCh. 6 - Prob. 6.37QCh. 6 - Prob. 6.38QCh. 6 - Prob. 6.39QCh. 6 - Prob. 6.40QCh. 6 - Prob. 6.41QCh. 6 - Prob. 6.42QCh. 6 - Prob. 6.43QCh. 6 - Prob. 6.44QCh. 6 - Prob. 6.45QCh. 6 - Prob. 6.46QCh. 6 - Prob. 6.47QCh. 6 - Prob. 6.48QCh. 6 - Prob. 6.49QCh. 6 - Prob. 6.50QCh. 6 - Prob. 6.51QCh. 6 - Prob. 6.52QCh. 6 - Prob. 6.53QCh. 6 - Prob. 6.54QCh. 6 - Prob. 6.55QCh. 6 - Prob. 6.56QCh. 6 - Prob. 6.57QCh. 6 - Prob. 6.58QCh. 6 - Prob. 6.59QCh. 6 - Prob. 6.60QCh. 6 - Prob. 6.61QCh. 6 - Prob. 6.62QCh. 6 - Prob. 6.63QCh. 6 - Prob. 6.64QCh. 6 - Prob. 6.65QCh. 6 - Prob. 6.66QCh. 6 - Prob. 6.67QCh. 6 - Prob. 6.68QCh. 6 - Prob. 6.69QCh. 6 - Prob. 6.70QCh. 6 - Prob. 6.71QCh. 6 - Prob. 6.72QCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - Prob. 6.82PCh. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - Prob. 6.91PCh. 6 - Prob. 6.92PCh. 6 - Prob. 6.93PCh. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - Prob. 6.96PCh. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - Prob. 6.99PCh. 6 - Prob. 6.100PCh. 6 - Prob. 6.101PCh. 6 - Prob. 6.102PCh. 6 - Prob. 6.103PCh. 6 - Prob. 6.104PCh. 6 - Prob. 6.105PCh. 6 - Prob. 6.106PCh. 6 - Prob. 6.107PCh. 6 - Prob. 6.108PCh. 6 - Prob. 6.109PCh. 6 - Prob. 6.110PCh. 6 - Prob. 6.111PCh. 6 - Prob. 6.112PCh. 6 - Prob. 6.113PCh. 6 - Prob. 6.114PCh. 6 - Prob. 6.115PCh. 6 - Prob. 6.116PCh. 6 - Prob. 6.117PCh. 6 - Prob. 6.118PCh. 6 - Prob. 6.119PCh. 6 - Prob. 6.120PCh. 6 - Prob. 6.121PCh. 6 - Prob. 6.122PCh. 6 - Prob. 6.123PCh. 6 - Prob. 6.124PCh. 6 - Prob. 6.125PCh. 6 - Prob. 6.126PCh. 6 - Prob. 6.127PCh. 6 - Prob. 6.128PCh. 6 - Prob. 6.129PCh. 6 - Prob. 6.130PCh. 6 - Prob. 6.131PCh. 6 - Prob. 6.132PCh. 6 - Prob. 6.133PCh. 6 - Prob. 6.134PCh. 6 - Prob. 6.135PCh. 6 - Prob. 6.136PCh. 6 - Prob. 6.137PCh. 6 - Prob. 6.138PCh. 6 - Prob. 6.139PCh. 6 - Prob. 6.140PCh. 6 - Prob. 6.142DCh. 6 - Prob. 6.143DCh. 6 - Prob. 6.144DCh. 6 - Prob. 6.145DCh. 6 - Prob. 6.146DCh. 6 - Prob. 6.147DCh. 6 - Prob. 6.149D
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License