Microelectronics: Circuit Analysis and Design
4th Edition
ISBN: 9780073380643
Author: Donald A. Neamen
Publisher: McGraw-Hill Companies, The
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 16.96P
An analog signal in the range 0 to 5 V is to be converted to a digital signal with a quantization error of less than one percent. (a) What is the required number of bits? (b) What input voltage value represents 1 LSB? (c) What digital output represents an input voltage of 3.5424 V?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which statement describe a digital signal?
a.
is a smoothly and continuously varying voltage or current.
b.
will take on finite set of voltage levels.
c.
take on all possible values of amplitude.
d.
can have an infinite number of values in a range
An analog voltage (0 to 5) volt is to be converted to 8 bit digital
form.
a. What is the resolution in volt.
b. What is the digital representation of 2.2 volt.
c. What is the largest quantization error as a percentage to full scale.
d. What is the error made in quantization of 2.2 volt as a percentage of
the input.
An analog voltage (0 to 5) volt is to be converted to 8 bit digital
form.
d. What is the error made in quantization of 2.2 volt as a percentage of
the input.
Chapter 16 Solutions
Microelectronics: Circuit Analysis and Design
Ch. 16 - Consider the NMOS inverter with resistor load in...Ch. 16 - The enhancementload NMOS inverter in Figure...Ch. 16 - Prob. 16.3EPCh. 16 - Prob. 16.4EPCh. 16 - Consider the NMOS inverter with enhancement load,...Ch. 16 - Prob. 16.2TYUCh. 16 - (a) Consider the results of Exercise Ex 16.1....Ch. 16 - Prob. 16.5EPCh. 16 - Prob. 16.6EPCh. 16 - (a) Design a threeinput NMOS NOR Logic gate with...
Ch. 16 - Consider the NMOS logic circuit in Figure 16.18....Ch. 16 - Repeat Exercise TYU 16.5 for the NMOS logic...Ch. 16 - The CMOS inverter in Figure 16.21 is biased at...Ch. 16 - swA CMOS inverter is biased at VDD=3V . The...Ch. 16 - A CMOS inverter is biased at VDD=1.8V . The...Ch. 16 - Prob. 16.7TYUCh. 16 - Repeat Exercise Ex 16.9 for a CMOS inverter biased...Ch. 16 - Determine the transistor sizes of a 3input CMOS...Ch. 16 - Design the widthtolength ratios of the transistors...Ch. 16 - Design a static CMOS logic circuit that implements...Ch. 16 - Prob. 16.10TYUCh. 16 - Prob. 16.11TYUCh. 16 - Sketch a clocked CMOS logic circuit that realizes...Ch. 16 - Prob. 16.12EPCh. 16 - Prob. 16.13TYUCh. 16 - Consider the CMOS transmission gate in Figure...Ch. 16 - Prob. 16.15TYUCh. 16 - Prob. 16.14EPCh. 16 - Prob. 16.16TYUCh. 16 - Prob. 16.17TYUCh. 16 - Sketch the quasistatic voltage transfer...Ch. 16 - Sketch an NMOS threeinput NOR logic gate. Describe...Ch. 16 - Discuss how more sophisticated (compared to the...Ch. 16 - Sketch the quasistatic voltage transfer...Ch. 16 - Discuss the parameters that affect the switching...Ch. 16 - Prob. 6RQCh. 16 - Sketch a CMOS threeinput NAND logic gate. Describe...Ch. 16 - sDiscuss how more sophisticated (compared to the...Ch. 16 - Prob. 9RQCh. 16 - Sketch an NMOS transmission gate and describe its...Ch. 16 - Sketch a CMOS transmission gate and describe its...Ch. 16 - Discuss what is meant by pass transistor logic.Ch. 16 - Prob. 13RQCh. 16 - Prob. 14RQCh. 16 - Prob. 15RQCh. 16 - Describe the basic architecture of a semiconductor...Ch. 16 - ‘Sketch a CMOS SRAM cell and describe its...Ch. 16 - Prob. 18RQCh. 16 - Describe a maskprogrammed MOSFET ROM memory.Ch. 16 - Describe the basic operation of a floating gate...Ch. 16 - Prob. 16.1PCh. 16 - Prob. 16.2PCh. 16 - (a) Redesign the resistive load inverter in Figure...Ch. 16 - Prob. D16.4PCh. 16 - Prob. 16.5PCh. 16 - Prob. D16.6PCh. 16 - Prob. 16.7PCh. 16 - Prob. 16.8PCh. 16 - For the depletion load inverter shown in Figure...Ch. 16 - Prob. 16.10PCh. 16 - Prob. D16.11PCh. 16 - Prob. D16.12PCh. 16 - Prob. 16.13PCh. 16 - For the two inverters in Figure P16.14, assume...Ch. 16 - Prob. 16.15PCh. 16 - Prob. 16.16PCh. 16 - Prob. 16.17PCh. 16 - Prob. 16.18PCh. 16 - Prob. D16.19PCh. 16 - Prob. 16.20PCh. 16 - Prob. 16.21PCh. 16 - Prob. 16.22PCh. 16 - In the NMOS circuit in Figure P16.23, the...Ch. 16 - Prob. 16.24PCh. 16 - Prob. 16.25PCh. 16 - Prob. 16.26PCh. 16 - What is the logic function implemented by the...Ch. 16 - Prob. D16.28PCh. 16 - Prob. D16.29PCh. 16 - Prob. 16.31PCh. 16 - Prob. 16.32PCh. 16 - Prob. 16.33PCh. 16 - Consider the CMOS inverter pair in Figure P16.34....Ch. 16 - Prob. 16.35PCh. 16 - Prob. 16.36PCh. 16 - Prob. 16.37PCh. 16 - Prob. 16.38PCh. 16 - Prob. 16.39PCh. 16 - (a) A CMOS digital logic circuit contains the...Ch. 16 - Prob. 16.41PCh. 16 - Prob. 16.42PCh. 16 - Prob. 16.43PCh. 16 - Prob. 16.44PCh. 16 - Prob. 16.45PCh. 16 - Prob. 16.46PCh. 16 - Prob. 16.47PCh. 16 - Prob. 16.48PCh. 16 - Prob. 16.49PCh. 16 - Prob. 16.50PCh. 16 - Prob. 16.51PCh. 16 - Prob. 16.52PCh. 16 - Prob. D16.53PCh. 16 - Figure P16.54 is a classic CMOS logic gate. (a)...Ch. 16 - Figure P16.55 is a classic CMOS logic gate. (a)...Ch. 16 - Consider the classic CMOS logic circuit in Figure...Ch. 16 - (a) Given inputs A,B,C,A,B and C , design a CMOS...Ch. 16 - (a) Given inputs A, B, C, D, and E, design a CMOS...Ch. 16 - (a) Determine the logic function performed by the...Ch. 16 - Prob. D16.60PCh. 16 - Prob. 16.61PCh. 16 - Prob. 16.62PCh. 16 - Sketch a clocked CMOS domino logic circuit that...Ch. 16 - Sketch a clocked CMOS domino logic circuit that...Ch. 16 - Prob. D16.65PCh. 16 - Prob. 16.66PCh. 16 - Prob. 16.67PCh. 16 - The NMOS transistors in the circuit shown in...Ch. 16 - Prob. 16.69PCh. 16 - Prob. 16.70PCh. 16 - Prob. 16.71PCh. 16 - (a) Design an NMOS pass transistor logic circuit...Ch. 16 - Prob. 16.73PCh. 16 - What is the logic function implemented by the...Ch. 16 - Prob. 16.75PCh. 16 - Prob. 16.76PCh. 16 - Prob. 16.77PCh. 16 - Consider the NMOS RS flipflop in Figure 16.63...Ch. 16 - Prob. 16.79PCh. 16 - Consider the circuit in Figure P16.80. Determine...Ch. 16 - Prob. D16.81PCh. 16 - Prob. 16.82PCh. 16 - Prob. 16.83PCh. 16 - Prob. 16.84PCh. 16 - (a) A 1 megabit memory is organized in a square...Ch. 16 - Prob. 16.86PCh. 16 - Prob. 16.87PCh. 16 - Prob. 16.88PCh. 16 - Prob. D16.89PCh. 16 - Prob. 16.90PCh. 16 - Prob. 16.91PCh. 16 - Prob. 16.92PCh. 16 - Prob. D16.93PCh. 16 - Prob. D16.94PCh. 16 - Prob. D16.95PCh. 16 - An analog signal in the range 0 to 5 V is to be...Ch. 16 - Prob. 16.97PCh. 16 - Prob. 16.98PCh. 16 - Prob. 16.99PCh. 16 - The weightedresistor D/A converter in Figure 16.90...Ch. 16 - The Nbit D/A converter with an R2R ladder network...Ch. 16 - Prob. 16.102PCh. 16 - Prob. 16.103PCh. 16 - Prob. 16.104PCh. 16 - Prob. 16.105PCh. 16 - Design a classic CMOS logic circuit that will...Ch. 16 - Prob. D16.111DPCh. 16 - Prob. D16.112DPCh. 16 - Prob. D16.113DP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The resolution of the ADC unit with the reference voltage value of 3V is set to 8 bits. If the voltage level applied to the ADC input is 1.67 V, what is the numerical value read? For numbers with commas, take 4 digits after commas.?arrow_forward5- Discuss the effect of changing the number of bits on the recovered analog waveform. 6- Discuss the effect of changing the frequency of input analog signal on the reconstructed analog output signal.arrow_forwardGive me right solution otherwise leave it. A voltage signal with a range of zero to 115 V. is to be converted by means of an ADC. Determine the minimum number of bits required to obtain a resolution of 10V?arrow_forward
- Q2/ The information in an analog signal voltage waveform is to be transmitted over a PCM system with an accuracy of ±0.1% (full scale). The analog voltage waveform has a bandwidth of 100 Hz and an amplitude range of -10 to +10 volts. Find the minimum sampling rate required. i) ii) Find minimum bit rate required in the PCM signal. Find the number of bits in each PCM word. iii) iv) Find the minimum absolute channel bandwidth required for the transmission of the PCM signal.arrow_forwardA frequency counter is gated on for 10 ms and counts 540 pulses from a periodic input signal . What is the input frequency? a) If the gate time is changed to 100 ms , approximately how many counts would you expect from the same source during the gate time? b) In what way does the change in the gate time affect the resolution?arrow_forward(b) Consider a voice signal from a analog telephone which needs to be digitized. Explain the steps involved in the conversion of analog to digital signal. If suppose the sampled analog values are 1V, 2V, 3.5V and 4.5V, use a 2 bit quantizer to digitize these values. Assume the range of sampled analog values from 0V to 5V. Provide the digitized values of this signal and draw the digital signal.arrow_forward
- 2) Convert Hexa-decimal to Octal a. 7E6A(16)=?(8) b. C350(16)=?(8) c. 9E36.7A(16)=?(8) d. EADD.EBEF(16)-?(8)arrow_forwardInverter.arrow_forwardWhich statement is not true for a source encoder? a.reduces the size of the data b.Converts analog information to discrete signal c.Removes redundancy d.Converts digital input to pulsating signalarrow_forward
- The required 7-segmrnt decoder should have 3-inputs (which are the bits of the binary number desired to be designed, call them A,B,C), and 7 outputs (the 7 segments of the display unit which are a, b, c, d, e, f & g). 8. gf a b t la Ob d Dp e d8c Dp The 7-segment to be used is of common anode type. Consequently, any segment will be ON if its input is Low, meaning that for displaying 0 the segments inputs (a,b,c,d,e,f.g) should be (0000001), or g will be OFF while all the others are ON. 1- Make a table explaining the inputs and the corresponding outputs for the 6 combinations input (000.101), assuming the other two combinations as don't care. 2- Find the output as a function of the inputs (A,B,C) using K-map to minimize the expressions 3- Show your design using 2-input, and 3-input NAND gates, and inverter.arrow_forward1a. If an 8-bit binary number is used to represent an analog value in the range from 010 to 10010, what does the binary value 011001002 represent? 1b. If an 8-bit binary number is used to represent an analog value in the range from 32 to 212, what is the accuracy of the system? In other words, if the binary number is incremented by one, how much change does it represent in the analog value?arrow_forwardSuppose an analog-digital converter IC ('chip") inputs a voltage ranging from 0 to 3.5 volts DC and converts the magnitude of that voltage into an 8-bit binary number. How many discrete "steps" are there in the output as the converter circuit resolves the input voltage from one end of its range (0 volts) to the other (3.5 volts)? How much voltage does each of these steps represent?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
Introduction to Logic Gates; Author: Computer Science;https://www.youtube.com/watch?v=fw-N9P38mi4;License: Standard youtube license