Concept explainers
(a)
Interpretation:
Pressure exerted by
Concept Introduction:
The expression for ideal gas equation for one mole of gas is as follows:
Here,
The formula to calculate pressure of one mole of gas is as follows:
Here,
(a)
Explanation of Solution
Rearrange equation (1) to calculate
Substitute
Substitute
Pressure exerted by
(b)
Interpretation:
Pressure exerted by
Concept Introduction:
Refer to part (a).
(b)
Explanation of Solution
Rearrange equation (1) to calculate
Substitute
Substitute
Pressure exerted by
(c)
Interpretation:
Pressure exerted by
Concept Introduction:
Refer to part (a).
(c)
Explanation of Solution
Rearrange equation (1) to calculate
Substitute
Substitute
Ideal gas equation and van der Waals equation have same values at low pressures but high differences arise when pressure is high.
Want to see more full solutions like this?
Chapter 3 Solutions
Chemical Principles: The Quest for Insight
- Given that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forwardYou have two pressure-proof steel cylinders of equal volume, one containing 1.0 kg of CO and the other containing 1.0 kg of acetylene, C2H2. (a) In which cylinder is the pressure greater at 25 C? (b) Which cylinder contains the greater number of molecules?arrow_forwardHow does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forward
- The van der Waals constants for HCl are a = 3.67 atm·liter2·mole–2, and b = 40.8 cc·mole–1. Find the critical constants of this substance.arrow_forwardSulfur dioxide reacts with oxygen in the presence of plati- num to give sulfur trioxide: 2 SO2(g) + O2(g) → 2 SO3(g) Suppose that at one stage in the reaction, 26.0 mol SO2, 83.0 mol O2, and 17.0 mol SO3 are present in the reaction vessel at a total pressure of 0.950 atm. Calculate the mole fraction of SO3 and its partial pressure.arrow_forwardAir is approximately 78% nitrogen, 21% oxygen, and 1% argon (note that unless stated explicitly, gas concentrations are always expressed in terms of partial pressures (or mole fractions), so a gas "concentration" of 78% implies 78% of the total pressure is due to that gas). That average volume of breath a healthy adult woman takes is 400. mL. If a woman breathes in air at 22.0 C with a total barometric pressure of 0.97 atm and it warms to her core temperature of 37.6 C, what is the partial pressure of the three components of air in her lungs? (Assume that the volume of the gas does not change as the gas warms up.)arrow_forward
- (b) A mixture of helium, hydrogen and carbon dioxide gases are at a pressure of 1200 torr in a 4 L closed container. There are a total of 24 moles of gas molecules in the container. If the helium concentration is 2 moles/L and hydrogen concentration is 1.5 moles/L, estimate the partial pressure of carbon dioxide in atm.arrow_forwardA sample of 3.73 mol of argon is confined at low pressure in a volume at a temperature of 61 C. Describe quantitatively the effects of each of the following changes on the pressure, the average kinetic energy per molecule in the gas, and the root-mean-square speed. (a) The temperature is increased to 177 °C. (b) The volume is tripled. (c) The amount of argon is decreased to 1.96 mol. Give each answer as a decimal factor of the form: new value = factor old value. A factor of 1 means no change. Change KEavg Urms (а) (b) (c)arrow_forwardCommercial scuba divers use tanks filled with a mixture of gases known as Trimix on very long, deep dives. Trimix is composed of 70% nitrogen, 10% oxygen, and 20% helium. The total pressure of TRIMIX inside a certain tank is at the beginning of a dive is 118.4atm. What is the partial pressure of oxygen in a tank?arrow_forward
- Natural gas is a mixture of hydrocarbons, primarily methane (CH4) and ethane (C2H6). A typical mixture might have mole fraction of methane = 0.915 and mole fraction of ethane = 0.085. (a) What are the partial pressure of the two gases in a 14.10 L container of natural gas at 30 degrees Celcius and 1.34 atm? (b) Assuming complete combustion of both gases in the natural gas sample, what is the total mass of water formed? Hint: Write the balanced combustion chemical equation for each gas separately in the gas mixture to find the mass of water formed.arrow_forwardA quantity of N2(g) gas occupies a volume of 1.0 L at 300 K and 1.0 atm. The gas expands to a volume of 3.0 L as the result of a change in both temperature and pressure. Find the density of the gas (in g·L–1) under these new conditions.arrow_forwardA sample of an ideal gas at 1.00 atm1.00 atm and a volume of 1.24 L1.24 L was placed in a weighted balloon and dropped into the ocean. As the sample descended, the water pressure compressed the balloon and reduced its volume. When the pressure had increased to 30.0 atm,30.0 atm, what was the volume of the sample? Assume that the temperature was held constant. V= Larrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning