Concept explainers
(a)
Interpretation:
Partial pressure of
Concept Introduction:
An ideal gas contains a large number of randomly moving particles that are supposed to have perfectly elastic collisions among themselves. It is a theoretical concept. Gases that show perfect elastic collision are practically not possible. At higher
Here,
(b)
Interpretation:
Total pressure of mixture has to be determined.
Concept Introduction:
Dolton’s law of partial pressure gives relation between total pressure of mixture of gases and partial pressure of individual gases. The expression of relation can be represented as follows:
Here,
A and B are individual gases.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Chemical Principles: The Quest for Insight
- Given that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forwardGiven that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forwardIn the discussion on the composition of air, mention is made of the fact that water vapor may have a concentration as high as 40,000 ppm. Calculate the partial pressure exerted by water vapor at this concentration. Assume that this represents a situation with 100% humidity. What temperature would be needed to achieve this value? (See Appendix G.)arrow_forward
- How would the use of a volatile liquid affect the measurement of a gas using open-ended manometers vs. closed-end manometers?arrow_forwardMass of a vacuumed (empty) vessel of volume 5 L is 640.05 g, and mass of the same vessel filled with this hydrocarbon up to the pressure 2.0 atm at 22 oC is 658.23 g. What is the molecular formula of the hydrocarbon?arrow_forwardA gas mixture being used to simulate the atmosphere of another planet consists of 320 mg of methane, 175 mg of argon, and 225 mg of nitrogen. The partial pressure of nitrogen at 300 K is 15.2 kPa. Calculate (a) the volume and (b) the total pressure of the mixture.arrow_forward
- A sample of volume 18.3 L has a mass of 57.9 g.(a) Is the material gaseous or condensed?(b) If the molar mass of the material is 123 g mol-1 , calculate its molar volume.arrow_forwardA container with volume 0.2 m² contains of 2.5 moles of oxygen gas. Given that the molar mass of oxygen molecule is 32 g/mol and the most probable speed is 576 m/s. Consider the gas as an ideal gas, find (a) the root-mean-square speed of each molecule. (b) the temperature of the oxygen gas, (c) the pressure of the oxygen gas, (d) the number of mole of molecules which the speed is in the range of 400-420 m/s. Mu2 v?e 2RT Maxwell distribution function P(v) = 4n 2nRTarrow_forwardGiven that 3.75 moles of carbon monoxide gas are present in a container of volume 15.30 L, what is the pressure of the gas (in atm) if the temperature is 89 ° C?arrow_forward
- Vessel A (volume 16.6 L) contains 30 g of hydrocarbon, and its pressure at 300 K is 1 atm.What is molecular weight of hydrocarbon ?arrow_forwardA sample of 4.72 mol of krypton is confined at low pressure in a volume at a temperature of 68 °C. Describe quantitatively the effects of each of the following changes on the pressure, the average kinetic energy per molecule in the gas, and the root-mean-square speed. (a) The temperature is decreased to -49 °C.(b) The volume is doubled.(c) The amount of krypton is increased to 6.47 mol. Give each answer as a decimal factor of the form: new value = factor old value. A factor of 1 means no change.arrow_forwardA sample of volume 258 cm3has a mass of 2.71 kg.(a) Is the material gaseous or condensed?(b) If the molar mass of the material is 108 g mol-1 , calculate its molar volume.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning