Foundations of Materials Science and Engineering
Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 8.15, Problem 68SEP

Draw the hypothetical phase diagram for a binary system of metals A and B with limited solubility in each other. The following information is given:

Melt temperature of metal A is 327°C.

Melt temperature of metal B is 225°C.

A invariant reaction in which liquid upon cooling transforms simultaneously into a mixture of two solid phases occurs at 185°C.

At the invariant reaction point, the alloy contains 62 wt% metal A.

The maximum solubility of metal B in metal A is 20 wt% at a temperature of 185°C. The maximum solubility of metal A in metal B is 2.5 wt% at a temperature of 185°C.

Blurred answer
Students have asked these similar questions
An alloy system consists of two metals A&B which are soluble in each other in all proportions in the liquid state, but completely insoluble in the solid state. The melting point of metal A is 425°C and B is 375°C. The lowest melting point (Eutectic) is 230°C at 40%B. For a 40 wt% B alloy at 450°C, the phases weight are 0 kg A, 0 kg B and 1 kg Liquid 0 kg Liquid and 1 kg A 0.5 kg B& 0.5 kg A O 0.35 kg A and 0.65 kg B
Question: Construct the hypothetical phase diagram for metals A and B between room temperature (20°C) and 700°C given the following information: The melting temperature of metal A is 480°C. The maximum solubility of B in A is 4 wt% B, which occurs at 420°C. The solubility of B in A at room temperature is 0 wt% B. One eutectic occurs at 420°C and 18 wt% B–82 wt% A. A second eutectic occurs at 475°C and 42 wt% B–58 wt% A. The intermetallic compound AB exists at a composition of 30 wt% B–70 wt% A, and melts congruently at 525°C. The melting temperature of metal B is 600°C. The maximum solubility of A in B is 13 wt% A, which occurs at 475°C.                ●            The solubility of A in B at room temperature is 3 wt% A.
For the metals A and B, which are given below, create the hypothetical phase diagram between 500 ° C and 900 ° C temperatures.Ø A metal has a melting temperature of 840 ° C.The solubility of Ø B in A can be ignored at all temperatures.Ø Melting temperature of Metal B is 730 ° C.The maximum solubility of A in Ø B is 10% A by weight, which occurs at 600 ° C.At 500 ° C, the solubility of A in B is 6% A by weight.Ø An eutectic 600 ° C and 74% B by weight - 26% by weight A are formed.Ø The second eutectic occurs at 630 ° C and 59% B - 41% A by weight.Ø A third eutectic occurs at 655 ° C and 39% B - 61% A by weight.Ø A congress melting point is formed at 680 ° C and 52% B - 48% A by weight.Ø A second congress melting point is formed at 655 ° C and 66% B - 34% A by weight.Ø Intermetallic compound AB is present at 52 wt% B - 48 wt% A.Ø Intermetallic compound AB2 is present at 66 wt% B to 34 wt% A.

Chapter 8 Solutions

Foundations of Materials Science and Engineering

Ch. 8.15 - Prob. 11KCPCh. 8.15 - Prob. 12KCPCh. 8.15 - Prob. 13KCPCh. 8.15 - Describe the mechanism that produces the...Ch. 8.15 - Can coring and surrounding occur in a...Ch. 8.15 - What is a monotectic invariant reaction? How is...Ch. 8.15 - Write equations for the following invariant...Ch. 8.15 - How are eutectic and eutectoid reactions similar?...Ch. 8.15 - Distinguish between (a) a terminal phase and (b)...Ch. 8.15 - Distinguish between (a) an intermediate phase and...Ch. 8.15 - What is the difference between a congruently...Ch. 8.15 - Consider an alloy containing 70 wt% Ni and 30 wt%...Ch. 8.15 - Consider the binary eutectic coppersilver phase...Ch. 8.15 - If 500 g of a 40 wt% Ag60 wt% Cu alloy is slowly...Ch. 8.15 - A lead-tin (PbSn) alloy consists of 60 wt%...Ch. 8.15 - A PbSn alloy (Fig. 8.12) contains 40 wt% and 60...Ch. 8.15 - An alloy of 30 wt% Pb70 wt% Sn is slowly cooled...Ch. 8.15 - Consider the binary peritectic iridiumosmium phase...Ch. 8.15 - Consider the binary peritectic iridiumosmium phase...Ch. 8.15 - Consider the binary peritectic iridiumosmium phase...Ch. 8.15 - In the copperlead (CuPb) system (Fig. 8.24) for an...Ch. 8.15 - For an alloy of Cu70 wt% Pb (Fig. 8.24), determine...Ch. 8.15 - What is the average composition (weight percent)...Ch. 8.15 - Consider an Fe4.2 wt% Ni alloy (Fig. 8.17) that is...Ch. 8.15 - Consider an Fe5.0 wt% Ni alloy (Fig. 8.17) that is...Ch. 8.15 - Determine the weight percent and composition in...Ch. 8.15 - Determine the composition in weight percent of the...Ch. 8.15 - Draw, schematically, the liquidus and the solidus...Ch. 8.15 - Consider the CuZn phase diagram of Figure 8.26. a....Ch. 8.15 - Consider the nickelvanadium phase diagram of...Ch. 8.15 - Consider the titaniumaluminum phase diagram of...Ch. 8.15 - What is the composition of point y in Figure...Ch. 8.15 - In Figure 8.12, determine the degree of freedom,...Ch. 8.15 - The cooling curve of an unknown metal shows a...Ch. 8.15 - In the PbSn phase diagram (Fig. 8.12), answer the...Ch. 8.15 - Based on the CuAg phase diagram in Figure P8.23,...Ch. 8.15 - Based on the PdAg phase diagram in Figure EP 8.3,...Ch. 8.15 - Prob. 49SEPCh. 8.15 - Derive the lever rule for the amount in weight...Ch. 8.15 - Based on the AlNi phase diagram given in Figure...Ch. 8.15 - Prob. 52SEPCh. 8.15 - Based on the Al2O3SiO2 phase diagram in Figure...Ch. 8.15 - (a) Design a CuNi alloy that will be completely...Ch. 8.15 - Prob. 55SEPCh. 8.15 - Given that Pb and Sn have similar tensile...Ch. 8.15 - Consider the sugarwater phase diagram shown in...Ch. 8.15 - In Figure P8.57, if 60 g of water and 140 g of...Ch. 8.15 - In Figure P8.57, if 30 g of water and 170 g of...Ch. 8.15 - At 80C, if the wt% of sugar is 80%, (a) what...Ch. 8.15 - (a) Based on the phase diagram in Figure P8.61,...Ch. 8.15 - Referring to Figure P8.61. explain what happens as...Ch. 8.15 - Referring to Figure P8.61, (a) explain what...Ch. 8.15 - Using Figure P8.40, explain what the phase diagram...Ch. 8.15 - Using Figure P8.40. explain why, according to the...Ch. 8.15 - (a) In the TiAl phase diagram. Figure P8.42, what...Ch. 8.15 - Draw an approximate hypothetical phase diagram for...Ch. 8.15 - Draw the hypothetical phase diagram for a binary...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Science, Phase Diagrams, Part 1; Author: Welt der Werkstoffe;https://www.youtube.com/watch?v=G83ZaoB3XCc;License: Standard Youtube License