PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
7th Edition
ISBN: 9781119610526
Author: Mannering
Publisher: WILEY
Question
Book Icon
Chapter 7, Problem 30P
To determine

The number cycle for the approach to have no vehicles in the queue and the total delay for the approach.

Blurred answer
Students have asked these similar questions
7.24 Vehicles arrive at an approach to a pretimed signalized intersection. The arrival rate over the cycle is given by the function v(t) = 0.22 + 0.012t [v(t) is in veh/s and t is in seconds]. There are no vehicles in the queue when the cycle (effective red) begins. The cycle length is 60 seconds and the saturation flow rate is 3600 veh/h. Determine the effective green and red times that will allow the queue to clear exactly at the end of the cycle (the end of the effective green), and determine the total vehicle delay for this approach over the cycle (assuming D/D/1 queuing).
An observer notes that an approach to a pretimed signal has a maximum of eight vehicles in a queue in a given cycle. If the saturation flow rate is 1440 veh/h and the effective red time is 40 seconds, how much time will it take this queue to clear after the start of the effective green (assuming that approach capacity exceeds arrivals and D/D/1 queuing applies)?
Traffic demand shown in the figure below uniformly arrives at an intersection. Determine the optimal cycle length and split for the 2- phase signal control. The saturation flow rate of each approach is 2000 [veh/hr of effec-tive green] during the first 40 [sec] after the start of green, but it drops to 1900 [veh/hr of effective green] thereafter. Also, the lost time is assumed to be 5 [sec/phase]. 1000[veh/h] 300[veh/h] 500[veh/h] 1300[veh/h]
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning