An Introduction to Thermal Physics
An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
bartleby

Videos

Textbook Question
Book Icon
Chapter 5.3, Problem 29P

Aluminum silicate, Al 2 SiO 5 , has three different crystalline forms: kyanite, andalusite, and sillimanite. Because each is stable under a different set of temperature–pressure conditions, and all are commonly found in metamorphic rocks, these minerals are important indicators of the geologic history of rock bodies.

(a) Referring to the thermodynamic data at the back of this book, argue that at 298 K the stable phase should be kyanite, regardless of pressure.

(b) Now consider what happens at fixed pressure as we vary the temperature. Let G be the difference in Gibbs free energies between any two phases, and similarly for S . Show that the T dependence of G is given by G ( T 2 ) = G ( T 1 ) T 1 T 2 S ( T ) d T

Although the entropy of any given phase will increase significantly as the temperature increases, above room temperature it is often a good approximation to take S , the difference in entropies between two phases, to be independent of T. This is because the temperature dependence of S is a function of the heat capacity (as we saw in Chapter 3), and the heat capacity of a solid at high temperature depends, to a good approximation, only on the number of atoms it contains.

(c) Taking S to be independent of T, find the range of temperature over which kyanite, andalusite, and sillimanite should be stable (at 1 bar).

(d) Referring to the room–temperature heat capacities of the three form of Al 2 SiO 5 , discuss the accuracy the approximation S = constant .

Blurred answer
Students have asked these similar questions
For a 40 wt.% Sn60 wt.% Pb alloy at 150\deg C, (a) what phase(s) is (are) present? (b) What is (are) the composition(s) of the phase(s)? (c) What is (are) the relative amount of the phase(s) in terms of mass fraction?
A 101 gg -gg sample of steam at 100 ∘C is emitted from a volcano. It condenses, cools, and falls as snow at 0 ∘C. (For water, 80. cal (334 JJ) is needed to melt 1 gg of ice or must be removed to freeze 1 gg of water and 540 cal (2260 JJ) is needed to convert 1 gg of water to vapor at 100 ∘C∘C.). How many kilojoules of heat were released? Express your answer with the appropriate units.
We're told oxygen is the most common element in the Earth's solid crust. But how much oxygen is there? Let's compare to the amount of oxygen in the Earth's atmosphere, like this: • The most common minerals in the Earth's crust are feldspars, and albite (NaAlSi,0g) is a typical feldspar. Let's assume the entire crust is made of albite with a density of 2.6 g/cm°. • The radius of the Earth is 6371. km and let's say the crust is the upper 100. km of it. • Let's model the Earth's atmosphere as a layer on top of the Earth about 100. km thick with an average density of 0.99 g/m", and which is 23.1% oxygen by mass. Use this information to calculate the ratio of the mass of oxygen in the Earth's atmosphere to the mass of oxygen in the Earth's crust. Round your answer to 2 significant digits.

Chapter 5 Solutions

An Introduction to Thermal Physics

Ch. 5.1 - Suppose that a hydrogen fuel cell, as described in...Ch. 5.1 - Prob. 12PCh. 5.1 - Prob. 13PCh. 5.1 - Prob. 14PCh. 5.1 - Prob. 15PCh. 5.1 - Prob. 16PCh. 5.1 - Prob. 17PCh. 5.2 - Prob. 18PCh. 5.2 - In the previous section 1 derived the formula...Ch. 5.2 - Prob. 20PCh. 5.2 - Is heat capacity (C) extensive or intensive? What...Ch. 5.2 - Prob. 22PCh. 5.2 - Prob. 23PCh. 5.3 - Go through the arithmetic to verify that diamond...Ch. 5.3 - Prob. 25PCh. 5.3 - How can diamond ever be more stable than graphite,...Ch. 5.3 - Prob. 27PCh. 5.3 - Calcium carbonate, CaCO3, has two common...Ch. 5.3 - Aluminum silicate, Al2SiO5, has three different...Ch. 5.3 - Sketch qualitatively accurate graphs of G vs. T...Ch. 5.3 - Sketch qualitatively accurate graphs of G vs. P...Ch. 5.3 - The density of ice is 917kg/m3. (a) Use the...Ch. 5.3 - An inventor proposes to make a heat engine using...Ch. 5.3 - Below 0.3 K the Slope of the 3He solid–liquid...Ch. 5.3 - Prob. 35PCh. 5.3 - Effect of altitude on boiling water. (a) Use the...Ch. 5.3 - Prob. 37PCh. 5.3 - Prob. 38PCh. 5.3 - Prob. 39PCh. 5.3 - The methods of this section can also be applied to...Ch. 5.3 - Suppose you have a liquid (say, water) in...Ch. 5.3 - Ordinarily, the partial pressure of water vapor in...Ch. 5.3 - Assume that the air you exhale is at 35C, with a...Ch. 5.3 - Prob. 44PCh. 5.3 - Prob. 46PCh. 5.3 - Prob. 47PCh. 5.3 - Prob. 48PCh. 5.3 - Prob. 49PCh. 5.3 - The compression factor of a fluid is defined as...Ch. 5.3 - Prob. 51PCh. 5.3 - Prob. 52PCh. 5.3 - Repeat the preceding problem for T/Tc=0.8.Ch. 5.3 - Prob. 54PCh. 5.3 - Prob. 55PCh. 5.4 - Prove that the entropy of mixing of an ideal...Ch. 5.4 - In this problem you will model the mixing energy...Ch. 5.4 - Suppose you cool a mixture of 50% nitrogen and 50%...Ch. 5.4 - Suppose you start with a liquid mixture of 60%...Ch. 5.4 - Suppose you need a tank of oxygen that is 95%...Ch. 5.4 - Prob. 62PCh. 5.4 - Everything in this section assumes that the total...Ch. 5.4 - Figure 5.32 shows the phase diagram of plagioclase...Ch. 5.4 - Prob. 65PCh. 5.4 - Prob. 66PCh. 5.4 - Prob. 67PCh. 5.4 - Plumbers solder is composed of 67% lead and 33%...Ch. 5.4 - What happens when you spread salt crystals over an...Ch. 5.4 - What happens when you add salt to the ice bath in...Ch. 5.4 - Figure 5.35 (left) shows the free energy curves at...Ch. 5.4 - Repeat the previous problem for the diagram in...Ch. 5.5 - If expression 5.68 is correct, it must be...Ch. 5.5 - Prob. 74PCh. 5.5 - Compare expression 5.68 for the Gibbs free energy...Ch. 5.5 - Seawater has a salinity of 3.5%, meaning that if...Ch. 5.5 - Osmotic pressure measurements can be used to...Ch. 5.5 - Because osmotic pressures can be quite large, you...Ch. 5.5 - Most pasta recipes instruct you to add a teaspoon...Ch. 5.5 - Use the Clausius–Clapeyron relation to derive...Ch. 5.5 - Prob. 81PCh. 5.5 - Use the result of the previous problem to...Ch. 5.6 - Prob. 83PCh. 5.6 - Prob. 84PCh. 5.6 - Prob. 85PCh. 5.6 - Prob. 86PCh. 5.6 - Sulfuric acid, H2SO4, readily dissociates into H+...Ch. 5.6 - Prob. 88PCh. 5.6 - Prob. 89PCh. 5.6 - When solid quartz dissolves in water, it combines...Ch. 5.6 - When carbon dioxide dissolves in water,...Ch. 5.6 - Prob. 92P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY