Concept explainers
In the method of separation of variables (Section 4.2)for two-dimensional, steady-state conduction, the separationconstant
Whether a negative or zero value of
Answer to Problem 4.1P
The boundary condition 4 results in a trivial solution so a negative or zero value of
Explanation of Solution
Formula Used:
The temperature distribution equation is given by,
The two dimensional steady state conduction equations is given by,
Calculation:
Substitute Equation (I) in Equation (II).
Divide Equation (III) by
Use separation constant
Case 1:
Assume
Substitute
From the above equation, the auxiliary equation is written as,
Here, the roots for the auxiliary equation are unequal and real.
The general solution for the auxiliary equation is given by,
Substitute
From the above equation, the auxiliary equation is written as,
The general solution for the auxiliary equation is given by,
Substitute
Apply boundary condition 1: at
Apply boundary condition 2: at
A trivial solutions results as the constant
Case 2:
Assume
Substitute
Integrate the above obtained equation.
Integrate the above equation.
Substitute
Apply boundary condition 2: at
Apply boundary condition 1: at
Apply boundary condition 3: at
Apply boundary condition 4: at
Conclusion:
The boundary condition 4 results in a trivial solution so a negative or zero value of
Want to see more full solutions like this?
Chapter 4 Solutions
Introduction to Heat Transfer
- Assume steady-state, one-dimensional heat conduction through the symmetric shape shown in Figure 1. Assuming that there is no internal heat generation, derive an expression for the thermal conductivity k(x) for these conditions: A(x) = (1 - x), T(x) = 300(1 - 2x - x3), and q = 6000 W, where A is in square meters, T in kelvins, and x in meters. Consider x= 0 and 1.arrow_forwardAssume steady-state, one-dimensional heat conduction through the symmetric shape shown in Figure 1. Assuming that there is no internal heat generation, derive an expression for the thermal conductivity k(x) for these conditions: A(x) = (1 - x), T(x) = 300(1 - 2x - x3), and q = 6000 W, where A is in square meters, T in kelvins, and x in meters. Consider x= 0 and 1.arrow_forwardIn this question, we are concerned with the evolution of the temperature u(x, t) in a homogeneous thin heat conducting rod of length L = 1. We can consider that the rod is laterally insulated as to have a one-dimensional problem. The evolution of the temperature is governed by the one-dimensional heat equation ди 0 0 = K Ət Əx2' Assume that this equation is subject to the following initial conditions u(x,0) = f(x) and boundary conditions (0, t) = 0 and ди (1,t) + и(1,t) — 0 (i) Discuss briefly the physical meaning of the boundary conditions.arrow_forward
- Do fast i will give you good ratearrow_forwardA 1-D conduction heat transfer problem with internal energy generation is governed by the following equation: +-= dx2 =0 W where è = 5E5 and k = 32 If you are given the following node diagram with a spacing of Ax = .02m and know that m-K T = 611K and T, = 600K, write the general equation for these internal nodes in finite difference form and determine the temperature at nodes 3 and 4. Insulated Ar , T For the answer window, enter the temperature at node 4 in Kelvin (K). Your Answer: EN SORN Answer units Pri qu) 232 PM 4/27/2022 99+ 66°F Sunny a . 20 ENLARGED oW TEXTURE PRT SCR IOS DEL F8 F10 F12 BACKSPACE num - %3D LOCK HOME PGUP 170arrow_forwardCan you help me with question 3 show all the steps taken.arrow_forward
- Derive an expression for the temperature distribution within a sphere that has inner radius r, where the temperature T, and outer radius r, where the temperature T,. Assume the heat source within the wall of sphere is q' and the heat conductivity is k. also assume one-dimensional heat transfer (r - direction)arrow_forwardThe steady state temperature3/3 distribution in a one dimensional wall of thermal conductivity 50W/mK and thickness 5cm is observed to be T("C) = a + bx2, where a =200°C, b = -2000°C/m2, and x is in meters. Determine the heat generation rate in the wall.arrow_forwardPlease help me answer question 1, show all the steps taken.arrow_forward
- Consider a solid sphere of radius R with a fixed surface temperature, TR. Heat is generated within the solid at a rate per unit volume given by q = ₁ + ₂r; where ₁ and ₂ are constants. (a) Assuming constant thermal conductivity, use the conduction equation to derive an expression for the steady-state temperature profile, T(r), in the sphere. (b) Calculate the temperature at the center of the sphere for the following parameter values: R=3 m 1₁-20 W/m³ TR-20 °C k-0.5 W/(m K) ₂-10 W/m³arrow_forwardAn annulus (e.g., a tube) has a temperature of Ti at the inner surface (at ri) and a temperature of To at the outer surface (at ro). Steady-state conditions prevail and there is not any heat generation in the annulus. However, the thermal conductivity k of the annulus is a strong function of temperature and can be described mathematically by the following function k(T) = a + bT + cT2. Calculate the total rate of heat flow (not heat flux) through the annulus if it is L long. Show steps to get to the answer attached.arrow_forwardA solid cylinder of radius R and length L is made from material with thermal conductivity 2. Heat is generated inside the cylinder at a rate S (energy per unit volume per unit time). (a) Neglecting conduction along the axis of the cylinder, find the steady-state temperature distribution in the cylinder, given that the surface temperature is Ts. (b) Consider a crude approximation of a mouse modeled as a cylinder of radius 1 cm and length 5 cm. If the ambient air temperature is 10°C and the internal rate of heat generation in the animal is 10-³ W/cm³, find the skin temperature (Ts) for the mouse. The external heat-transfer coefficient is h = 0.2 W/m².K. (You can neglect conduction along the axis of the mouse, as in part a.)arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning