Biochemistry
9th Edition
ISBN: 9781319114671
Author: Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
Chapter 22, Problem 38P
Interpretation Introduction
Interpretation:
Role of decarboxylation in fatty acid synthesis must be determined.
Other
Concept introduction:
The process of fatty acid synthesis occurs in the cytosol of the animal cells, while it occurs in the stroma of chloroplast in the plant cells. It is a stepwise process, which occurs by the addition of two-carbon units. These carbon units are provided by the acetyl-CoA, derived from glucose oxidation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Amino AcidMetabolism.
a. What are the SIXprecursors used in amino acid biosynthesis?
b. What are the SEVEN metabolic intermediates that result from amino acid degradation?
c. Circle the metabolites found in your answers to both a) & b) above.
d) What is the difference between glucogenic and ketogenic amino acids? List the glucogenic amino acids, the ketogenic amino acids & the amino acids that are both glucogenic & ketogenic.
Answer correctly.
Instructions.
Given each set of information which may include common name(s) and the reaction catalyzed, you are required to identify the main class of the specific enzyme described.
Name: citryl-CoA synthetase
Reaction: ATP + citrate + CoA = ADP + phosphate + (3S)-citryl-CoA
Name: D-xylulose reductase
Reaction: xylitol + NAD+ = D-xylulose + NADH + H+
Name: cellobiose phosphorylase
Reaction: cellobiose phosphate = α-D-glucose 1-phosphate + D-glucose
Name: carbonic anhydrase
Reaction: H2CO3 = CO2 + H2O
Other info: The enzyme catalyzes the reversible hydration of gaseous CO2 to carbonic acid, which dissociates to give hydrogencarbonate above neutral pH.
Name: pantoate activating enzyme
Reaction: ATP + (R)-pantoate = AMP + diphosphate + (R)-pantothenate.
Chapter 22 Solutions
Biochemistry
Ch. 22 - Prob. 1PCh. 22 - Prob. 2PCh. 22 - Prob. 3PCh. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Prob. 7PCh. 22 - Prob. 8PCh. 22 - Prob. 9PCh. 22 - Prob. 10P
Ch. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - Prob. 13PCh. 22 - Prob. 14PCh. 22 - Prob. 15PCh. 22 - Prob. 16PCh. 22 - Prob. 17PCh. 22 - Prob. 18PCh. 22 - Prob. 19PCh. 22 - Prob. 20PCh. 22 - Prob. 21PCh. 22 - Prob. 22PCh. 22 - Prob. 23PCh. 22 - Prob. 24PCh. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - Prob. 29PCh. 22 - Prob. 30PCh. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - Prob. 33PCh. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - Prob. 39PCh. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - Prob. 43PCh. 22 - Prob. 44PCh. 22 - Prob. 45PCh. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - Prob. 48PCh. 22 - Prob. 49PCh. 22 - Prob. 50PCh. 22 - Prob. 51PCh. 22 - Prob. 52PCh. 22 - Prob. 53PCh. 22 - Prob. 54PCh. 22 - Prob. 55PCh. 22 - Prob. 56PCh. 22 - Prob. 57PCh. 22 - Prob. 58PCh. 22 - Prob. 59PCh. 22 - Prob. 60PCh. 22 - Prob. 61PCh. 22 - Prob. 62P
Knowledge Booster
Similar questions
- Only galactose need. Solve like samplearrow_forwardATP yield. Each of the following molecules is processed by glycolysis to lactate. How much ATP is generated from each molecule?arrow_forwardTracing glucose. Glucose labeled with 14 C at C-6 is added to a solution containing the enzymes and cofactors of the oxidative phase of the pentose phosphate pathway. What is the fate of the radioactive label?arrow_forward
- please explain. I will rate your response based on the accuracy of your answers. Two right answers get a thumbs up rating! Thank you.arrow_forwardG. ENZYME CLASSIFICATION. Identify the main class of enzymes used to catalyzed the following reactions: 1. Lactate dehydrogenase: NADH+H NAD HC-OH CH3 CH Pynnte Lactate 2. Methylmalonyl-CoA mutase: CH CH SCOA CH,CH, SCOA coenzyme B12 COO COO methylmalonyl-CoA succinyl-CoA 3. Enolase: 0. H–Ċ–0–P–0- C-0–P-0- + H,0 HO–CH, CH 6 Phosphoenolpyruvate 2-Phosphoglycerate 4. Chymotrypsin: -0–CH,CH3 + H2O - RCOOH + HOCH,CH3 5. Pyruvate carboxylase: coo • co, • ATP + H,0 H-C-H . ADP + P, + 2H čoo CH, Pyruvate Oxaleacetatearrow_forwardHi, can someone help please. Thank you!arrow_forward
- BIOCHEMISTRY. Could glycerol be used to regenerate the OAA for maintenance of TCA cycle activity? Yes or No? Explain.arrow_forwarddisease. As such, a frontline treatment for Type 2 diabetes is the drug metformin, which acts indirectly to inhibit gluconeogenesis in the liver. You are a research biochemist who would like to develop new drugs that act to directly inhibit gluconeogenesis. You have just gained access to a library of thousands of small molecules of unknown activity, and you would like to identify lead compounds that have specific inhibitory activity against steps in the gluconeogenesis pathway. (a) into PEP in order to screen for inhibitors of enzymes specific to gluconeogenesis. Which enzymes do you need to purify, what cofactors and allosteric effectors do they require, and which reactants do you need to add to reconstitute the reactions for the first bypass? Which intermediates and products are generated? Your first approach is to reconstitute the initial set of bypass reactions that convert pyruvate (b) vitro reconstitution? What additional steps and enzymes are required in liver cells but are…arrow_forwardIdentification.arrow_forward
- . Pyruvate can be processed under anaerobic conditions to ethanol (in yeast) or to lactate (in mammals), as shown. Explain the primary purpose of these reactions. Describe the major biochemical features of each reactionarrow_forwardI want handwritten solution only.arrow_forwardentation . During the process of glycolysis, some hydrogen atoms are removed from glucose in the formation of pyruvate. This is an example of which (4.1) KU process (a) hydrolysis (b) dehydration (c) dehydration synthesis (condensation) (d) reduction If y think the statarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON
Biochemistry
Biochemistry
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:W. H. Freeman
Lehninger Principles of Biochemistry
Biochemistry
ISBN:9781464126116
Author:David L. Nelson, Michael M. Cox
Publisher:W. H. Freeman
Fundamentals of Biochemistry: Life at the Molecul...
Biochemistry
ISBN:9781118918401
Author:Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:WILEY
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Fundamentals of General, Organic, and Biological ...
Biochemistry
ISBN:9780134015187
Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:PEARSON