Computer Systems: A Programmer's Perspective (3rd Edition)
Computer Systems: A Programmer's Perspective (3rd Edition)
3rd Edition
ISBN: 9780134092669
Author: Bryant, Randal E. Bryant, David R. O'Hallaron, David R., Randal E.; O'Hallaron, Bryant/O'hallaron
Publisher: PEARSON
Question
Book Icon
Chapter 4.3, Problem 4.25PP
Program Plan Intro

Processing stages:

  • The processing of an instruction has number of operations.
  • The operations are organized into particular sequence of stages.
  • It attempts to follow a uniform sequence for all instructions.
  • The description of stages are shown below:
    • Fetch:
      • It uses program counter “PC” as memory address to read instruction bytes from memory.
      • The 4-bit portions “icode” and “ifun” of specifier byte is extracted from instruction.
      • It fetches “valC” that denotes an 8-byte constant.
      • It computes “valP” that denotes value of “PC” plus length of fetched instruction.
    • Decode:
      • The register file is been read with two operands.
      • It gives values “valA” and “valB” for operands.
      • It reads registers with instruction fields “rA” and “rB”.
    • Execute:
      • In this stage the ALU either performs required operation or increments and decrements stack pointer.
      • The resulting value is termed as “valE”.
      • The condition codes are evaluated and destination register is updated based on condition.
      • It determines whether branch to be utilized in a jump instruction.
    • Memory:
      • The memory has data written into it or read operation is done from memory.
      • The value that is read is determined as “valM”.
    • Write back:
      • The results are been written to register file.
      • It can write up to two results.
    • PC update:
      • The program counter “PC” denotes memory address to read bytes of instruction from memory.
      • It is used to set next instruction’s address.

Combinational circuits and HCL expressions:

  • The computational blocks are been constructed by accumulating several logic gates into network.
  • The restrictions are been shown below:
    • Each of input for logic gate should be connected to any one shown below:
      • One of system inputs, that is identified as primary inputs.
      • Output connection for some element in memory.
      • Output of some logic gate.
    • Outputs obtained from more than two logic gates could not be linked together.
      • The wire would be driven to different voltages.
      • It can cause malfunction in circuit.
    • The network should not contain cycles.
      • The loops in circuit can cause ambiguity in function computed by network.
  • The “HCL” denotes a hardware control language that is used for describing control logic of different processor designs.

Blurred answer
Students have asked these similar questions
(a) An instruction at address 021 in the basic computer has I-0, an operation code of the AND instruction, and an address part equal to 083 (all numbers are in hexadecimal). The memory word at address 083 contains the operand B8F2 and the content of AC is A937. Go over the instruction cycle and determine the contents of the following registers at the end of the execute phase: PC, AR, DR, AC, and IR. Repeat the problem six more times starting with an operation code of another memory- reference instruction.
Question: C part     A         Instruction Set Architecture A.1        Instruction set We present a list of instructions typical of a RISC (reduced instruction set computer) machine. In data-movement and control instructions, the addresses may be immediate #X, direct (memory) M, indirect (memory) [M], register r, or register indirect [r] addresses. Data-processing instructions use immediate or register addressing. PC is the programme counter and a <- b indicates that the value of b is placed in a.     LOAD a, b                    a <- b STOR a, b                    a <- b ADD a, b, c               a <- b + c   ASH a, b, c               a <- (b >>[s] c) LSH a, b, c               a <- (b >>[u] c) BR a               PC <- a   SUB a, b, c a <- b - c BEQ a, b, c PC <- a if b = c MUL a, b, c a <- b * c BNE a, b, c PC <- a if not b = c DIV a, b, c a <- b…
(c) The following Sigma 16 program has been loaded into memory at address 0000: load R3,y[RO] load R4,x[RO] lea R5, 2[RO] sub R1,R4,R3 mul R2,R1,R5 store R2,w[RO] trap RO,RO,RO x data 10 y data 12 w data 0 Show the content of the memory writing hexadecimal representation and using a table with 3 columns: the memory address, the contents of that memory address, and an explanation of what "the content (of that memory address) means". As a reference, here are the opcodes for RRR instructions: add 0, sub 1, mul 2, trap c. And here the opcodes for RX instructions: lea 0, load 1, store 2. [7]

Chapter 4 Solutions

Computer Systems: A Programmer's Perspective (3rd Edition)

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education