Physics: Principles with Applications
Physics: Principles with Applications
6th Edition
ISBN: 9780130606204
Author: Douglas C. Giancoli
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 2, Problem 78GP

(a)

To determine

Time required by first stone to reach the ground.

(a)

Expert Solution
Check Mark

Answer to Problem 78GP

Time required by first stone to reach the ground is 5.63 s

Explanation of Solution

Given:

Initial velocity of second stone which is thrown after 2 seconds is 25 m/s.

Both the stones land at the same time.

Formula used:

  S=ut+12at2v2=u2+2gS

Calculation:

Here,

  t2=t12u=25 m/sg=9.8 m/s2

t1 is the time taken by the first stone and t2 is the time taken by the second stone.

Using kinematical equation,

  S=ut+12at2

For first stone,

  S1=12gt12(1)

For second stone,

  S2=12gt22

But t2=t12

Hence,

  S2=25×(t12)+12×g×(t12)2(2)

To find the value of t1, divide both equations.

  S1S2=12gt1225×(t2)+12×g×(t12)2

But both stones are falling from same height. So

  S1=S2

  12gt12=25×(t12)+12×g×(t12)2t1=5.63 sec

Conclusion:

Time required by first stone to reach the ground is 5.63 s

(b)

To determine

Height of the building

(b)

Expert Solution
Check Mark

Answer to Problem 78GP

Height of the building is 155.3 m.

Explanation of Solution

Given:

Initial velocity of second stone which is thrown after 2 seconds is 25 m/s.

Both the stones land at the same time.

Formula used:

  S=ut+12at2v2=u2+2gS

Calculation:

To find the height of the building,

  S1=12gt12S1=12×9.8×(5.63)2S1=155.3 m

Conclusion:

Height of the building is 155.3 m.

(c)

To determine

Speeds of both the stones.

(c)

Expert Solution
Check Mark

Answer to Problem 78GP

Speeds of both the stones 55 m/s.

Explanation of Solution

Given:

Initial velocity of second stone which is thrown after 2 seconds is 25 m/s.

Both the stones land at the same time.

Formula used:

  S=ut+12at2v2=u2+2gS

Calculation:

  S1=S2=155.3 mg=9.8 m/s2

As height of building is same, hence velocity before reaching the ground would be,

  V2=2gS1=2gS2=2×9.8×155.3V=55 m/s

Conclusion:

Speeds of both the stones will be 55 m/s.

Chapter 2 Solutions

Physics: Principles with Applications

Ch. 2 - Can an object be increasing in speed as its...Ch. 2 - A baseball player hits a ball straight up into the...Ch. 2 - As a freely falling object speeds up, what is...Ch. 2 - Prob. 14QCh. 2 - You travel from point A to point B in a car moving...Ch. 2 - Prob. 16QCh. 2 - Prob. 17QCh. 2 - Prob. 18QCh. 2 - Prob. 19QCh. 2 - Prob. 20QCh. 2 - Describe in words the motion plotted in Fig. 2-32...Ch. 2 - Describe in words the motion of the object graphed...Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prob. 9PCh. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A sports car accelerates from rest to 95 km/h in...Ch. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - 19.(II) A sports car moving at constant velocity...Ch. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57GPCh. 2 - Prob. 58GPCh. 2 - Prob. 59GPCh. 2 - Prob. 60GPCh. 2 - Prob. 61GPCh. 2 - Prob. 62GPCh. 2 - Prob. 63GPCh. 2 - Prob. 64GPCh. 2 - Prob. 65GPCh. 2 - Prob. 66GPCh. 2 - Prob. 67GPCh. 2 - Prob. 68GPCh. 2 - Prob. 69GPCh. 2 - Prob. 70GPCh. 2 - Prob. 71GPCh. 2 - Prob. 72GPCh. 2 - Prob. 73GPCh. 2 - Prob. 74GPCh. 2 - Prob. 75GPCh. 2 - Prob. 76GPCh. 2 - Prob. 77GPCh. 2 - Prob. 78GPCh. 2 - Prob. 79GPCh. 2 - Prob. 80GPCh. 2 - Prob. 81GPCh. 2 - Prob. 82GPCh. 2 - Prob. 83GPCh. 2 - Prob. 84GPCh. 2 - Prob. 85GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY