Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 110P
The flow of water through a 150-mm-diameter horizontal pipe that enlarges abruptly to 300 mm diameter, is 0.14 m3/s. The pressure in the smaller pipe is 138 kPa. Calculate the pressure in the 300-mm-diameter pipe, neglecting pipe friction.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water is pumped at a rate of 24.33 m/s from tank (A) and out through a 298.05 m pipe to tank (B). The surface roughness of the pipe is 0.046 mm. When the water levels are as shown in the given figure, the
head provided by the pump is 70.54 m. Calculate the pipe diameter (mm) if the water temperature is 10°C (do not assume the water mass density and the viscosity). Use f = 0.02 for the first iteration and try
only one more iterations (two in total) by using Swamee and Jain formula.
Elevation
Elevatjon -
= 140 m
= 135 m
Tank (B)
Elevation
= 100 m
Tank (A)
pump
Elevation = 95 m
Water is transported in a pipe, at an average
flow rate of Q = 50 L/s. Calculate the pressure
difference p between the 2 manometers. We
can assume that the energy losses by friction are
negligible, and that there are only singular
energy losses (be careful to identify ALL the
singularities). The pump adds an energy of HP =
10 m to the system.
"GATE VALVE"
P2
OUVERTURE COMPLÈTE
do = 150 mm
Q = 50 L/s
• 2)
2 m
Q = 50 L/s
COUDES À
POMPE
RAYONS COURTS
do = 150 mm
(Hp = 10 m)
4.
A pipe carries oil of density 800 kg/m³. At a given point (1) the pipe has a bore area of
0.005 m² and the oil flows with a mean velocity of 4 m/s with a gauge pressure of 800 kPa.
Point (2) is further along the pipe and there the bore area is 0.002 m² and the level is 50 m
above point (1). Calculate the pressure at this point (2). Neglect friction. (374 kPa)
Chapter 8 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 8 - Consider incompressible flow in a circular...Ch. 8 - What is the maximum flow rate of air that may...Ch. 8 - For flow in circular tubes, transition to...Ch. 8 - An incompressible fluid flows between two infinite...Ch. 8 - Oil is confined in a 4-in.-diameter cylinder by a...Ch. 8 - Viscous oil flows steadily between parallel...Ch. 8 - Calculate for the flow in this two-dimensional...Ch. 8 - The velocity profile in a two-dimensional open...Ch. 8 - A large mass is supported by a piston of diameter...Ch. 8 - A hydraulic jack supports a load of 9000 kg. The...
Ch. 8 - The basic component of a pressure gage tester...Ch. 8 - When a horizontal laminar flow occurs between two...Ch. 8 - In a laminar flow of water of 0:007 m3/s between...Ch. 8 - Consider the simple power-law model for a...Ch. 8 - A sealed journal bearing is formed from concentric...Ch. 8 - Using the profile of Problem 8.15, show that the...Ch. 8 - In a laminar flow between parallel plates spaced...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - Two immiscible fluids are contained between...Ch. 8 - The record-read head for a computer disk-drive...Ch. 8 - Consider steady, incompressible, and fully...Ch. 8 - In a flow of air between parallel plates spaced...Ch. 8 - Consider fully developed flow between parallel...Ch. 8 - Free-surface waves begin to form on a laminar...Ch. 8 - A viscous-shear pump is made from a stationary...Ch. 8 - The efficiency of the viscous-shear pump of Fig....Ch. 8 - An inventor proposes to make a viscous timer by...Ch. 8 - A continuous belt, passing upward through a...Ch. 8 - A wet paint film of uniform thickness, , is...Ch. 8 - Consider first water and then SAE 10W lubricating...Ch. 8 - Using Eq. A.3 in Appendix A for the viscosity of...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Carbon dioxide flows in a 50-mm-diameter pipe at a...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - What is the largest diameter of pipeline that may...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Consider fully developed pressure-driven flow in a...Ch. 8 - In the laminar flow of an oil of viscosity 1 Pa_s,...Ch. 8 - In a laminar flow of 0.007 m3/s in a...Ch. 8 - Consider blood flow in an artery. Blood is...Ch. 8 - The classic Poiseuille flow (Eq. 8.12), is for...Ch. 8 - For pressure-driven, steady, fully developed...Ch. 8 - In a laminar flow in a 12-in.-diameter pipe the...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - In a food industry plant, two immiscible fluids...Ch. 8 - A horizontal pipe carries fluid in fully developed...Ch. 8 - Kerosene is pumped through a smooth tube with...Ch. 8 - In a flow of water in a 0.3-m-diameter pipe, the...Ch. 8 - A liquid drug, with the viscosity and density of...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Equation 8.23 gives the power-law velocity profile...Ch. 8 - Consider fully developed laminar flow of water...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - If the turbulent velocity profile in a pipe 0.6 m...Ch. 8 - Water flows in a horizontal constant-area pipe;...Ch. 8 - For a given volume flow rate and piping system,...Ch. 8 - Consider the pipe flow from the water tower of...Ch. 8 - At the inlet to a constant-diameter section of the...Ch. 8 - When oil (kinematic viscosity 1 104 m2/s,...Ch. 8 - When fluid of specific weight 50 lb/ft3 flows in a...Ch. 8 - If the head lost in 30-m-diameter of...Ch. 8 - Water flows at 10 L/min through a horizontal...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Water is pumped at the rate of 0.075 m3/s from a...Ch. 8 - Just downstream from the nozzle tip the velocity...Ch. 8 - A horizontal nozzle having a cylindrical tip of 75...Ch. 8 - When 0.3 m3/s of water flows through a...Ch. 8 - Water flows through a 2-in.-diameter tube that...Ch. 8 - A 50-mm-diameter nozzle terminates a vertical...Ch. 8 - A 12-in.-diameter pipe leaves a reservoir of...Ch. 8 - A water pipe gradually changes from 6-in.-diameter...Ch. 8 - Air at standard conditions flows through a sudden...Ch. 8 - Water flows from a larger pipe, diameter D1 = 100...Ch. 8 - Flow through a sudden contraction is shown. The...Ch. 8 - A flow rate of 1.01/min of oil of specific gravity...Ch. 8 - Water flows in a smooth pipeline at a Reynolds...Ch. 8 - Air flows out of a clean room test chamber through...Ch. 8 - A conical diffuser is used to expand a pipe flow...Ch. 8 - By applying the basic equations to a control...Ch. 8 - Water at 45C enters a shower head through a...Ch. 8 - Water discharges to atmosphere from a large...Ch. 8 - A laboratory experiment is set up to measure...Ch. 8 - Oil with kinematic viscosity = 7.5 104 ft2/s...Ch. 8 - Water from a pump flows through a 9-in.-diameter...Ch. 8 - A 5-cm-diameter potable water line is to be run...Ch. 8 - A system for testing variable-output pumps...Ch. 8 - Two reservoirs are connected by three clean...Ch. 8 - Water, at volume flow rate Q = 0.75 ft3/s, is...Ch. 8 - When you drink a beverage with a straw, you need...Ch. 8 - What flow rate (gpm) will be produced in a...Ch. 8 - Gasoline flows in a long, underground pipeline at...Ch. 8 - An 18-in.-diameter new riveted steel pipeline 1000...Ch. 8 - What diameter of smooth masonry pipe is needed to...Ch. 8 - Water flows steadily in a 125-mm-diameter...Ch. 8 - Two galvanized iron pipes of diameter D are...Ch. 8 - A mining engineer plans to do hydraulic mining...Ch. 8 - The flow of water through a 150-mm-diameter...Ch. 8 - The fluid flowing has specific gravity 0.90; V75=6...Ch. 8 - Water is flowing. Calculate the direction and...Ch. 8 - Investigate the effect of tube roughness on flow...Ch. 8 - Investigate the effect of tube length on water...Ch. 8 - For the pipe flow into a reservoir of Example 8.5...Ch. 8 - Calculate the magnitude and direction of the...Ch. 8 - Experimental determination of local losses and...Ch. 8 - Water is flowing. Calculate the gage reading when...Ch. 8 - The siphon shown is fabricated from 50-mm-i.d....Ch. 8 - A large open water tank has a horizontal cast iron...Ch. 8 - A tank containing 30 m3 of kerosene is to be...Ch. 8 - A 90 screwed elbow is installed in a...Ch. 8 - Calculate the total tension in the bolts. Neglect...Ch. 8 - A horizontal 50-mm-diameter PVC pipeline leaves...Ch. 8 - You are watering your lawn with an old hose....Ch. 8 - Your boss claims that for pipe flow the flow rate,...Ch. 8 - A hydraulic press is powered by a remote...Ch. 8 - One-quarter of a cubic meter per second of liquid...Ch. 8 - Calculate the flow rate from this water tank if...Ch. 8 - A 6-ft-diameter pipeline 4 miles long between two...Ch. 8 - A new industrial plant requires a water flow rate...Ch. 8 - What diameter water pipe is required to handle...Ch. 8 - A pipe friction experiment for air consists of a...Ch. 8 - Oil has been flowing from a large tank on a hill...Ch. 8 - The pressure rise across a water pump is 35 psi...Ch. 8 - Cooling water is pumped from a reservoir to rock...Ch. 8 - You are asked to size a pump for installation in...Ch. 8 - Heavy crude oil (SG = 0.925 and = 1.0 104 m2/s)...Ch. 8 - Petroleum products are transported over long...Ch. 8 - The head versus capacity curve for a certain fan...Ch. 8 - A swimming pool has a partial-flow filtration...Ch. 8 - Water at 65C flows through a 75-mm-diameter...Ch. 8 - A 12 in. 6 in. Venturi meter is installed in a...Ch. 8 - A 1-in.-diameter nozzle is attached to a...Ch. 8 - A sharp-edged orifice with conventional pressure...Ch. 8 - A venturi meter with a 3-in.-diameter throat is...Ch. 8 - Air flows through a venturi meter with a...Ch. 8 - Water at 10C flows steadily through a venturi. The...Ch. 8 - Drinking straws are to be used to improve the air...Ch. 8 - In some western states, water for mining and...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
1.1 What is the difference between an atom and a molecule? A molecule and a crystal?
Manufacturing Engineering & Technology
The impulses created by a falling weight onto a sample of URETHANE foam and CONFOR foam.
Engineering Mechanics: Statics & Dynamics (14th Edition)
Determine the resultant internal loadings acting on the cross sections at points F and G of the frame. Probs. 7...
Statics and Mechanics of Materials (5th Edition)
The block brake consists of a pin-connected lever and friction block at B. The coefficient of static friction b...
Engineering Mechanics: Statics
Two thousand cfm (1.0 m3/s) of air at an initial state of 60 F (16 C) db and relative humidity of 30 percent is...
Heating Ventilating and Air Conditioning: Analysis and Design
What material property enables snap-fits to be a common means of connecting plastic parts?
DeGarmo's Materials and Processes in Manufacturing
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A horizontal 300-mm pipe contracts to a 150-mm diameter. If the flow is 0.127 m3/s of oil (s.g.=0.88) and the pressure in the smaller pipe is 265 kPa what is the pressure in the bigger pipe neglecting friction?arrow_forwardA horizontal 150 mm diameter pipe gradually reduces its section to 50 mm diameter, subsequently enlarging into 150 mm section. The pressure in the 150-mm pipe at a point just before entering the reducing section is 140 kPa and in the 50 mm section at the end of the reducer, the pressure is 70 kPa. If 600 mm of head is lost between the points where the pressures are known, compute the rate of flow of water through the pipe.arrow_forwardQ//Determine the shaft power required for the pump to produce the flow shown in the figure . The efficiency is 80% and the losses may be neglected. The nozzle area 25cm2.arrow_forward
- Oil is flowing at the rate of 3.14 cfs in a pipe of varying cross section. At section A, the diameter is 6 in and the pressure is 12 psig. At another section B, the diameter is 16 in. Assume the heat loss between sections A and B to be 6ft of oil. Specific gravity of oil maybe taken as 0.85. Calculate the pressure B. How much is the velocity head? How much is the elevation head?arrow_forwardA 500 mm diameter pipe gradually reduces to 20 mm diameter and the gradually enlarge to its original size. Given the pressure at the base of the convergence of 0.60 MPa with a flow of 0.08 cu. m/s, 1. What is the velocity at point 1? 2. What is the velocity head at point 2? 3. Neglecting the head loss, the pressure of the smallest section is?arrow_forwardA siphon pipe of diameter 250 mm contracts to a diameter of 100 mm over a vertical distance of 5 m before emptying into a river. If the pipe is full of water flowing at 0.1 m/s at the 250 mm section, what is the absolute pressure at this point, and what is the water velocity just before it vents into the river? You should assume the pipe to be frictionless and take atmospheric pressure to be 100 kPa.arrow_forward
- Oil flows from a tank through a 50 mm diameter pipe. If the average velocity is 1,3 m/s, determine how long it will take for 2,5 tons of oil to flow out? Take Peil = 780 kg/m.arrow_forwardA pump at an elevation of 300m is pumping 0.05 m³/s of water through 2.4 km of 150-mm pipe to a reservoir whose level is at an elevation of 380m. What pressure will be found in the pipe at a point where the elevation is 335m above the datum and the distance (measured along the pipe) from the pipe is 970m? Compute the capacity of the pump. Use E/D= 1.5384x10-³arrow_forwardPlease solve it correctly within 30minutes.arrow_forward
- Calculate the discharge through a pipe of diameter 200 mm when the difference of pressure head between the two ends of pipe 500 m apart is 4 m of water. Take f 0.009arrow_forwardA venturi meter is introduced in a 300 mm diameter horizontal pipeline carrying a liquid under a pressure of 150 kPa. The throat diameter of the meter is 100 mm and the pressure at the throat is 400 mm of mercury below atmosphere. If 3% of the differential pressure is lost between inlet and the throat, determine the flow rate of the pipeline **provide complete solution using bernoullis equation..provide illustration with labels like datum line and such** Show all formula derivationarrow_forward6.5 BELLOWS 6100mm The horizontal elbow is joined by bellows to the rest of the piping system and it transports water. Determine the X and Y components of the force needed to keep the elbov in posi- tion. The pressure at A and B is 200 kPa, the flow rate is 30 L/s and the pipe diameter is 100 mm. 6.6 Water flows at a rate of 0,055 m³/s through a piping system and then issues from the pipe of 50 mm diameter into the atmosphere. Ø150mm Ø50mm Ignore losses in the pipe and determine the force required at the flange to keep the nozzle in position. (Hint: first determine the pressure at A with Bernoulli's equation.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License