An agricultural scientist tests six types of fertilizer, labeled A, B, C, D, E, and F, to determine whether any of them produces an increase in the yield of lima beans over that obtained with the current fertilizer. For fertilizer C, the increase in yield is statistically significant at the 0.05 level. For the other five, the increase is not statistically significant. The scientist concludes that the yield obtained with fertilizer C is greater than that of the current fertilizer. Explain why this conclusion is not justified.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Statistics for Engineers and Scientists
Additional Math Textbook Solutions
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
Pathways To Math Literacy (looseleaf)
Probability And Statistical Inference (10th Edition)
Precalculus
APPLIED STAT.IN BUS.+ECONOMICS
- Find the equation of the regression line for the following data set. x 1 2 3 y 0 3 4arrow_forwardUrban Travel Times Population of cities and driving times are related, as shown in the accompanying table, which shows the 1960 population N, in thousands, for several cities, together with the average time T, in minutes, sent by residents driving to work. City Population N Driving time T Los Angeles 6489 16.8 Pittsburgh 1804 12.6 Washington 1808 14.3 Hutchinson 38 6.1 Nashville 347 10.8 Tallahassee 48 7.3 An analysis of these data, along with data from 17 other cities in the United States and Canada, led to a power model of average driving time as a function of population. a Construct a power model of driving time in minutes as a function of population measured in thousands b Is average driving time in Pittsburgh more or less than would be expected from its population? c If you wish to move to a smaller city to reduce your average driving time to work by 25, how much smaller should the city be?arrow_forwardThe glycemic index (GI) is a rating system for foods containing carbohydrates. It shows how quickly each food affects your blood sugar (glucose) level when that food is eaten on its own. A random sample of 33 children were provided with a breakfast of low GI foods on one day and high GI foods on another. The two breakfasts contained the same quantities of carbohydrate, fat and protein. On each day a buffet lunch was provided, and the number of calories eaten at lunchtime were recorded. On the first day the children ate a low GI breakfast and on the second day a high GI breakfast. Let be the true mean of the differences in calorie intake for a high GI and a low GI breakfast, respectively. The researcher wants to conduct inference on to determine whether the kind of breakfast eaten has an effect on mean calorie intake. The differences are calculated as calorie intake after high-GI breakfast minus calorie intake after low-GI breakfast. The sample mean of the differences of 63.543…arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt