Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 48P
A mercury barometer is carried in a car on a day when there is no wind. The temperature is 20°C and the corrected barometer height is 761 mm of mercury. One window is open slightly as the car travels at 105 km/hr. The barometer reading in the moving car is 5 mm lower than when the car is stationary. Explain what is happening. Calculate the local speed of the air flowing past the window, relative to the automobile.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider an airplane flying with a velocity of 60 ft/s at a standard sea level conditions. At a point on the wing, the airflow velocity is 70 ft/s. Calculate the pressure at this point.
COnsider an airplane flying at a standard altitude of 6km with a velocity of 330m/s. At a point on the wing of the airplane, the velocity is 400m/s. Calculate the pressure at this point. Cp=1008 j/kgK. answer should be in metric. and detailed solution.
Consider the wind tunnel shown below. The diameter at section 1 is 0.9 m and the diameter at section 2 is 0.4 m. A
manometer is used to determine the pressure difference between the two sections. The manometer liquid has a
specific gravity of 0.82. Determine the change in height in the manometer if the velocity at section 2 is 66 m/s. Assume
incompressible flow and standard sea-level conditions. Provide answer in centimeters. Round-off answer to the nearest
whole number.
Chapter 6 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 6 - An incompressible frictionless flow field is given...Ch. 6 - A velocity field in a fluid with density of 1000...Ch. 6 - The x component of velocity in an incompressible...Ch. 6 - Consider the flow field with the velocity given by...Ch. 6 - Consider the flow field with the velocity given by...Ch. 6 - The velocity field for a plane source located...Ch. 6 - In a two-dimensional frictionless, incompressible...Ch. 6 - Consider a two-dimensional incompressible flow...Ch. 6 - An incompressible liquid with a density of 900...Ch. 6 - Consider a flow of water in pipe. What is the...
Ch. 6 - The velocity field for a plane vortex sink is...Ch. 6 - An incompressible liquid with negligible viscosity...Ch. 6 - Consider water flowing in a circular section of a...Ch. 6 - Consider a tornado as air moving in a circular...Ch. 6 - A nozzle for an incompressible, inviscid fluid of...Ch. 6 - A diffuser for an incompressible, inviscid fluid...Ch. 6 - A liquid layer separates two plane surfaces as...Ch. 6 - Consider Problem 6.15 with the nozzle directed...Ch. 6 - Consider Problem 6.16 with the diffuser directed...Ch. 6 - A rectangular computer chip floats on a thin layer...Ch. 6 - Heavy weights can be moved with relative ease on...Ch. 6 - The y component of velocity in a two-dimensional...Ch. 6 - The velocity field for a plane doublet is given in...Ch. 6 - Tomodel the velocity distribution in the curved...Ch. 6 - Repeat Example 6.1, but with the somewhat more...Ch. 6 - Using the analyses of Example 6.1 and Problem...Ch. 6 - Water flows at a speed of 25 ft/s. Calculate the...Ch. 6 - Plot the speed of air versus the dynamic pressure...Ch. 6 - Water flows in a pipeline. At a point in the line...Ch. 6 - In a pipe 0.3 m in diameter, 0.3 m3/s of water are...Ch. 6 - A jet of air from a nozzle is blown at right...Ch. 6 - The inlet contraction and test section of a...Ch. 6 - Maintenance work on high-pressure hydraulic...Ch. 6 - An open-circuit wind tunnel draws in air from the...Ch. 6 - Water is flowing. Calculate H(m) and p(kPa). P6.36Ch. 6 - If each gauge shows the same reading for a flow...Ch. 6 - Derive a relation between A1 and A2 so that for a...Ch. 6 - Water flows steadily up the vertical 1...Ch. 6 - Your car runs out of gas unexpectedly and you...Ch. 6 - A tank at a pressure of 50 kPa gage gets a pinhole...Ch. 6 - The water flow rate through the siphon is 5 L/s,...Ch. 6 - Water flows from a very large tank through a 5 cm...Ch. 6 - Consider frictionless, incompressible flow of air...Ch. 6 - A closed tank contains water with air above it....Ch. 6 - Water jets upward through a 3-in.-diameter nozzle...Ch. 6 - Calculate the rate of flow through this pipeline...Ch. 6 - A mercury barometer is carried in a car on a day...Ch. 6 - A racing car travels at 235 mph along a...Ch. 6 - The velocity field for a plane source at a...Ch. 6 - A smoothly contoured nozzle, with outlet diameter...Ch. 6 - Water flows steadily through a 3.25-in.-diameter...Ch. 6 - A flow nozzle is a device for measuring the flow...Ch. 6 - The head of water on a 50 mm diameter smooth...Ch. 6 - Water flows from one reservoir in a 200-mm pipe,...Ch. 6 - Barometric pressure is 14.0 psia. What is the...Ch. 6 - A spray system is shown in the diagram. Water is...Ch. 6 - Water flows out of a kitchen faucet of...Ch. 6 - A horizontal axisymmetric jet of air with...Ch. 6 - The water level in a large tank is maintained at...Ch. 6 - Many recreation facilities use inflatable bubble...Ch. 6 - Water flows at low speed through a circular tube...Ch. 6 - Describe the pressure distribution on the exterior...Ch. 6 - An aspirator provides suction by using a stream of...Ch. 6 - Carefully sketch the energy grade lines (EGL) and...Ch. 6 - Carefully sketch the energy grade lines (EGL) and...Ch. 6 - Water is being pumped from the lower reservoir...Ch. 6 - The turbine extracts power from the water flowing...Ch. 6 - Consider a two-dimensional fluid flow: u = ax + by...Ch. 6 - The velocity field for a two-dimensional flow is...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - The flow field for a plane source at a distance h...Ch. 6 - The stream function of a flow field is = Ax2y ...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - The stream function of a flow field is = Ax3 ...Ch. 6 - A flow field is represented by the stream function...Ch. 6 - Consider the flow field represented by the...Ch. 6 - Show by expanding and collecting real and...Ch. 6 - Consider the flow field represented by the...Ch. 6 - An incompressible flow field is characterized by...Ch. 6 - Consider an air flow over a flat wall with an...Ch. 6 - A source with a strength of q = 3 m2/s and a sink...Ch. 6 - The velocity distribution in a two-dimensional,...Ch. 6 - Consider the flow past a circular cylinder, of...Ch. 6 - The flow in a corner with an angle can be...Ch. 6 - Consider the two-dimensional flow against a flat...Ch. 6 - A source and a sink with strengths of equal...Ch. 6 - A flow field is formed by combining a uniform flow...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Determine the maximum compression of the spring mounted on car A. Neglect rolling resistance.
Engineering Mechanics: Dynamics (14th Edition)
The rigid bar is supported by the pin-connected rod CB that has a cross-sectional area of 14 mm2 and is made fr...
Mechanics of Materials
Determine the reactions at the supports. Prob. 4-6
Statics and Mechanics of Materials (5th Edition)
How are touch probes used in CNC machines to improve process capability?
DeGarmo's Materials and Processes in Manufacturing
What are the conditions necessary to produce high-quality diffusion welds?
Degarmo's Materials And Processes In Manufacturing
Exhaust gas from a furnace is used to preheat the combustion air supplied to the furnace burners. The gas,which...
Fundamentals of Heat and Mass Transfer
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- If you know that the dynamic temperature of air is 50 K. Then, its speed isarrow_forwardConsider an airplane flying with a velocity of 60ft/s at a standard sea level conditions. At a point on the wing, the airflow velocity is 70ft/s. Calculate the pressure at this point. Assume the incompressible flow.arrow_forwardWhile driving around a curve of 200-m radius, an engineer notes that a pendulum in the car hangs at an angle of 15 degrees to the vertical. What should the speedometer read?arrow_forward
- To what head of air (R = 287 J · kg−1·K−1) at an absolutepressure of 101.3kPa andtemperature of 15◦C is a pressureof 75 mm of water equivalent?arrow_forwardConsider air having standard sea level density is flowing through a wind tunnel. At the entrance of the wind tunnel, the velocity is 38 m/s. At the throat, the velocity is 169 m/s. Determine the density at the throat if the throat area is 37% of the area at the entrance. Provide answer in standard metric units. Round off answer to the nearest thousandths.arrow_forwardAn airplane is flying at 350 mi/h at 4000 m standard altitude. As is typical, the air velocity relative to the upper surface of the wing, near its maximum thickness, is 26 percent higher than the plane's velocity. Using Bernoulli's equation, calculate the absolute pressure at this point on the wing. Neglect elevation changes and compressibility. (The properties of air at 4000 m are p = 61633 Pa, p = 0.8191 kg/m³) Paarrow_forward
- Find the force required to pull a shaft with diameter D, steadily into a sleeve with diameter D, and length L at a velocity of V. The clearance between the shaft and the sleeve is filled with an oil of viscosity μ.arrow_forward2. A 25-mm diameter shaft with density 7,870 kg/m³ is pulled through a cylindrical bore as shown. Oil with a kinematic viscosity of 8.2 104 m²/s and SG-0.89 fills the 0.3-mm gap between the shaft and the bore. Find the magnitude of the force P required to pull the rod through the bore with a constant speed of 2.5 m/s. 0.5 m 15°arrow_forwardAn airplane is flying at sea level at a speed of 100 mps. Calculate the free-stream total pressure (Pa)arrow_forward
- Air is pumped into a 20-cu.ft tank until the pressure is 135 psig.When the pump is stopped, the temperature is 200°F. (a) What massis in the tank? What is its density, (b) If air is allowed to coolto 70°F, what is the pressure of the cooled air? The density?arrow_forwardPlease Solve it in type ( not handwriting )arrow_forwardTwo plates are placed at a distance of 0.15 mm apart. The lower plate is fixed while the upper plate having surface area 1.0 m² is pulled at 0.3 m/s. Find the force and power required to maintain this speed, if the fluid separating them is having viscosity 1.5 poise.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license