Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 45P
A closed tank contains water with air above it. The air is maintained at a gage pressure of 150 kPa and 3 m below the water surface a nozzle discharges into the atmosphere. At what velocity will water emerge from the nozzle?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Air flows steadily at low speed through a horizontal nozzle (by definition a device for accelerating a flow), discharging to atmosphere. The area at the nozzle inlet is 0.1 m2. At the nozzle exit, the area is 0.02 m2. Determine the gage pressure required at the nozzle inlet to produce an outlet speed of 50 m/s
The average velocity in a pipe flowing full of incompressible liquid is 3 m/s. after passing through a conical section that reduces streams cross sectional area to 1/4 of its previous value, what is the velocity after the conical section?
A jet of water strikes a stationary curved vane and is deflected by 150° from its originaldirection. The mass flow rate from the jet is 0.68 kg/s and has a velocity of 24 m/s. Calculatethe magnitude and direction of the resultant force on the vane.
Chapter 6 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 6 - An incompressible frictionless flow field is given...Ch. 6 - A velocity field in a fluid with density of 1000...Ch. 6 - The x component of velocity in an incompressible...Ch. 6 - Consider the flow field with the velocity given by...Ch. 6 - Consider the flow field with the velocity given by...Ch. 6 - The velocity field for a plane source located...Ch. 6 - In a two-dimensional frictionless, incompressible...Ch. 6 - Consider a two-dimensional incompressible flow...Ch. 6 - An incompressible liquid with a density of 900...Ch. 6 - Consider a flow of water in pipe. What is the...
Ch. 6 - The velocity field for a plane vortex sink is...Ch. 6 - An incompressible liquid with negligible viscosity...Ch. 6 - Consider water flowing in a circular section of a...Ch. 6 - Consider a tornado as air moving in a circular...Ch. 6 - A nozzle for an incompressible, inviscid fluid of...Ch. 6 - A diffuser for an incompressible, inviscid fluid...Ch. 6 - A liquid layer separates two plane surfaces as...Ch. 6 - Consider Problem 6.15 with the nozzle directed...Ch. 6 - Consider Problem 6.16 with the diffuser directed...Ch. 6 - A rectangular computer chip floats on a thin layer...Ch. 6 - Heavy weights can be moved with relative ease on...Ch. 6 - The y component of velocity in a two-dimensional...Ch. 6 - The velocity field for a plane doublet is given in...Ch. 6 - Tomodel the velocity distribution in the curved...Ch. 6 - Repeat Example 6.1, but with the somewhat more...Ch. 6 - Using the analyses of Example 6.1 and Problem...Ch. 6 - Water flows at a speed of 25 ft/s. Calculate the...Ch. 6 - Plot the speed of air versus the dynamic pressure...Ch. 6 - Water flows in a pipeline. At a point in the line...Ch. 6 - In a pipe 0.3 m in diameter, 0.3 m3/s of water are...Ch. 6 - A jet of air from a nozzle is blown at right...Ch. 6 - The inlet contraction and test section of a...Ch. 6 - Maintenance work on high-pressure hydraulic...Ch. 6 - An open-circuit wind tunnel draws in air from the...Ch. 6 - Water is flowing. Calculate H(m) and p(kPa). P6.36Ch. 6 - If each gauge shows the same reading for a flow...Ch. 6 - Derive a relation between A1 and A2 so that for a...Ch. 6 - Water flows steadily up the vertical 1...Ch. 6 - Your car runs out of gas unexpectedly and you...Ch. 6 - A tank at a pressure of 50 kPa gage gets a pinhole...Ch. 6 - The water flow rate through the siphon is 5 L/s,...Ch. 6 - Water flows from a very large tank through a 5 cm...Ch. 6 - Consider frictionless, incompressible flow of air...Ch. 6 - A closed tank contains water with air above it....Ch. 6 - Water jets upward through a 3-in.-diameter nozzle...Ch. 6 - Calculate the rate of flow through this pipeline...Ch. 6 - A mercury barometer is carried in a car on a day...Ch. 6 - A racing car travels at 235 mph along a...Ch. 6 - The velocity field for a plane source at a...Ch. 6 - A smoothly contoured nozzle, with outlet diameter...Ch. 6 - Water flows steadily through a 3.25-in.-diameter...Ch. 6 - A flow nozzle is a device for measuring the flow...Ch. 6 - The head of water on a 50 mm diameter smooth...Ch. 6 - Water flows from one reservoir in a 200-mm pipe,...Ch. 6 - Barometric pressure is 14.0 psia. What is the...Ch. 6 - A spray system is shown in the diagram. Water is...Ch. 6 - Water flows out of a kitchen faucet of...Ch. 6 - A horizontal axisymmetric jet of air with...Ch. 6 - The water level in a large tank is maintained at...Ch. 6 - Many recreation facilities use inflatable bubble...Ch. 6 - Water flows at low speed through a circular tube...Ch. 6 - Describe the pressure distribution on the exterior...Ch. 6 - An aspirator provides suction by using a stream of...Ch. 6 - Carefully sketch the energy grade lines (EGL) and...Ch. 6 - Carefully sketch the energy grade lines (EGL) and...Ch. 6 - Water is being pumped from the lower reservoir...Ch. 6 - The turbine extracts power from the water flowing...Ch. 6 - Consider a two-dimensional fluid flow: u = ax + by...Ch. 6 - The velocity field for a two-dimensional flow is...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - The flow field for a plane source at a distance h...Ch. 6 - The stream function of a flow field is = Ax2y ...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - The stream function of a flow field is = Ax3 ...Ch. 6 - A flow field is represented by the stream function...Ch. 6 - Consider the flow field represented by the...Ch. 6 - Show by expanding and collecting real and...Ch. 6 - Consider the flow field represented by the...Ch. 6 - An incompressible flow field is characterized by...Ch. 6 - Consider an air flow over a flat wall with an...Ch. 6 - A source with a strength of q = 3 m2/s and a sink...Ch. 6 - The velocity distribution in a two-dimensional,...Ch. 6 - Consider the flow past a circular cylinder, of...Ch. 6 - The flow in a corner with an angle can be...Ch. 6 - Consider the two-dimensional flow against a flat...Ch. 6 - A source and a sink with strengths of equal...Ch. 6 - A flow field is formed by combining a uniform flow...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
For what types of applications might thermit welding be attractive?
DeGarmo's Materials and Processes in Manufacturing
The copper pipe has an outer diameter of 40 mm and an inner diameter of 37 mm. If it is tightly secured to the ...
Statics and Mechanics of Materials (5th Edition)
Find the heat transfer in Problem 4.13.
Fundamentals Of Thermodynamics
Determine the normal stress in each member of the truss structure. All joints are ball joint, and the material ...
Introduction To Finite Element Analysis And Design
2.15 Compute the rectangular components parallel and perpendicular to the inclined planes shown.
Applied Statics and Strength of Materials (6th Edition)
The magnitude of resultant force FR acting on the screw eye and its direction ϕ measured counterclockwise from ...
Engineering Mechanics: Statics & Dynamics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water vapor, whose pressure is 650 kPa and temperature 573 K, enters a well-insulated device at a speed of 100 m/s. At the exit, the pressure drops to 130 kPa and the speed drops to 30 m/s, doing work of 530 kJ/kg. Find the quality of the steam at the outlet. Please help!!!! (Gpt/Ai wrong ans not allowed)arrow_forward. Indiana Jones needs to ascend a high-rise building. There is a large hose filled with pressurized water hanging down from the building top. He builds a square platform and mounts four 4-cm-diamter nozzles pointing down at each corner. By connecting hose branches, a water jet can be produced from each nozzle. Jones, the platform, and the nozzles have a combined mass of 150 kg. Determine the minimum water jet velocity needed to raise the system.arrow_forwardAir enters a fan through a duct velocity of 6.3 m/s and an inlet static pressure of 2.5cm of water less than the atmospheric pressure. The air leaves the fan through the duct at a velocity of 11.25 m/s and a discharge pressure of 7.62cm of water above the atmospheric pressure. If, the density of the air is 1.2kg/m3and the fan delivers 9.45m3/s, what is the fan efficiency when the power input to the fan is 13.75 kW at the coupling. Show schematic diagram and provide solutions.arrow_forward
- (4) A water hose connected to a nozzle is used to fill a 10 L container. The internal diameter of the hose is 2 cm and the nozzle exit has an inner diameter of 1.7 cm. It takes 30 s to fill up the container. If the inlet pressure is 2 atm and the nozzle exit is 0.8 m above the hosea. What is the velocity (m/s) of water at the outlet stream and at the inlet stream?b. What is the water pressure (atm) at the outlet stream c. What is the mass flow rate of water (kg/s)?arrow_forwardA water truck drives slowly around a construction site, spraying water to keep dust down. A pump maintains a constant pressure of 100 kPa, gage, and the water is dispersed through 20 spray nozzles, each of diameter 0.01 m. If the truck is initially filled with 4000 L of water, and the flow rate is constant, determine how long the truck can drive before a refill is necessary in seconds.arrow_forwardAir enters a fan through a duct velocity of 6.3m/s and an inlet static pressure of 2.5cm of water less than the atmospheric pressure. The air leaves the fan through the duct at a velocity of 11.25 m/s and a discharge pressure of 7.62cm of water above the atmospheric pressure. If the density of the air is 1.2kg/cu.m and the fan delivers9.45cu.m/s, what is the fan efficiency when the power input to the fan is 13.75kW at the coupling?arrow_forward
- QUICKLY AND CORRECTLY PLEASE Two gaseous stream containing the same fluid enter a mixing chamber and leave as a single stream. For the first gas the entrance condition are A1 = 500 cm2 , υ1 = 300 m/sec, ρ1 = 1.60 kg/m3 . For the second gas the entrance conditions are A2 = 400 cm2 , m2 = 8.84 kg/sec, v2 = 0.502 m3 /kg. The exit stream condition is υ3 = 130 m/s and v3 = 0.437 m3 /kg. Determine (a) the velocity of gas 2 (b) the area at the exit section in cm2 .arrow_forwardWater (modeled as an incompressible substance) flows steadily through a circular pipe oftotal length ? = 10 m. The mass flow rate through the pipe is ?̇ = 2 kg s⁄ and the watertemperature drops by 25°C as it moves through the pipe. Pressure losses within the pipeare negligible, as are any changes in potential and kinetic energy of the flowing fluid.a) Determine the rate of energy loss from the water as it moves through the pipe. Youmay treat the water as having a constant specific heat (? = 4.18 kJ kg-K⁄ ). Recall thatfor an incompressible substance Δℎ = Δ? + ?Δ?, where Δ? = ∫ ? ?? and ? is thespecific volume of the substance. Your solution should start with an energy balanceon an appropriately defined system/control volume.b) The air surrounding the pipe is at ?∞ = 25°C and the convection coefficient at theouter surface of the pipe is ℎ = 15 W m2-K⁄ . It is also known that the surfaceemissivity of the pipe is ? = 0.3 and the walls of the room where the pipe is locatedare at ?sur =…arrow_forwardFor the experimental setup of a jet striking on a hemispherical cup surface as shown in the figure, the nozzle diameter equal 145 cm, and the velocity of the water jet is 34.76 m/s. Determine the jet force on the cup, F (in kN). Determine the theoretical mass (in Kg) required to balance the force due to the impact of a jet striking on a hemispherical cup surface.arrow_forward
- In the jet impact experiment, water jet impacts on a curved vane in the vertical direction. As shown in the figure below, the exit has an angle with respect to the vertical direction. The distance from the nozzle to the vane surface at the exit is h. The water volume flow rate is measured to be Q, the density of water is p, and the cross section area of the nozzle is A₁. Assume that the flow has reached the steady state. (1) Use the Bernoulli's equation to determine the velocity Vout at the exit of the vane. Assume that friction between water and the curved vane can be neglected. (2) Apply the Reynolds transport theorem to derive the expression of the impact force F, on the curved vane (neglect the jet weight). (3) Under the condition of a fixed volume flow rate Q, determine the maximum impact force Fr,max that can be obtained when the angle varies (e.g. in different vane designs). Va out 9 Ao Vout harrow_forwardA garden hose attached with a nozzle is used to fill a 20 Liters bucket. The inner diameter of the hose is d hose=8 cm, and it reduces to d nozzle= 6.1 cm at the nozzle exit. If it takes 50 seconds to fill the bucket with water, determine average velocity m/s of water at the nozzle exit. Nozzle Garden hose Bucketarrow_forwardTen kilograms per second of air is flowing in an adiabatic system. At one section the pressure is 2.0 × 105 N/m2, the temperature is 650°C, and the area is 50 cm2. At a downstream section M2=1.2. (a) Sketch the general shape of the system. (b) Find A2 if the flow is frictionless. (c) Find A2 if there is an entropy change between these two sections of 42 J/kg-K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License