Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 24P
Tomodel the velocity distribution in the curved inlet section of a water channel, the radius of curvature of the streamlines is expressed as R = LR0/2y. As an approximation, assume the water speed along each streamline is V = 10 m/s. Find an expression for and plot the pressure distribution from y = 0 to the tunnel wall at y = L/2, if the centerline gage pressure is 50 kPa, L = 75 mm, and R0 = 0.2 m. Find the value of V for which the wall static pressure becomes 35 kPa.
P6.24
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
b
Water flows around the vertical two-dimensional bend with circular streamlines and constant velocity as shown in the figure below. If
the pressure is 62 kPa at point (1), determine the pressures at points (a) (2) and (b) (3). Assume that the velocity profile is uniform as
indicated.
=
Esc
Type here to search
L
1
A
30
@
2
W
S
4x
F2
#
3
E
4₁
D
O
$
4
R
F
F4
%
5
2m
99+
FS
T
G
A
6
4 m
1 m
Y
H
(3)
(2)
(1)
*
F7
&
7
V = 10 m/s
U
PrtScn
FB
8
Home 9
K
9
End
F10
)
0
L
36°F Clear
PgUp
F11
P
PgDn
40
+
(1)
7:00 PM
11/21/2022
Del
Backsp
Find the head loss due to friction in pipe
of diameter 30 cm and length 50 m
through which water is flowing at velocity
3 m/sec. Use Darcy's formula. Take
kinematic viscosity as 0.01 stokes.
Do all three parts of problem
Chapter 6 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 6 - An incompressible frictionless flow field is given...Ch. 6 - A velocity field in a fluid with density of 1000...Ch. 6 - The x component of velocity in an incompressible...Ch. 6 - Consider the flow field with the velocity given by...Ch. 6 - Consider the flow field with the velocity given by...Ch. 6 - The velocity field for a plane source located...Ch. 6 - In a two-dimensional frictionless, incompressible...Ch. 6 - Consider a two-dimensional incompressible flow...Ch. 6 - An incompressible liquid with a density of 900...Ch. 6 - Consider a flow of water in pipe. What is the...
Ch. 6 - The velocity field for a plane vortex sink is...Ch. 6 - An incompressible liquid with negligible viscosity...Ch. 6 - Consider water flowing in a circular section of a...Ch. 6 - Consider a tornado as air moving in a circular...Ch. 6 - A nozzle for an incompressible, inviscid fluid of...Ch. 6 - A diffuser for an incompressible, inviscid fluid...Ch. 6 - A liquid layer separates two plane surfaces as...Ch. 6 - Consider Problem 6.15 with the nozzle directed...Ch. 6 - Consider Problem 6.16 with the diffuser directed...Ch. 6 - A rectangular computer chip floats on a thin layer...Ch. 6 - Heavy weights can be moved with relative ease on...Ch. 6 - The y component of velocity in a two-dimensional...Ch. 6 - The velocity field for a plane doublet is given in...Ch. 6 - Tomodel the velocity distribution in the curved...Ch. 6 - Repeat Example 6.1, but with the somewhat more...Ch. 6 - Using the analyses of Example 6.1 and Problem...Ch. 6 - Water flows at a speed of 25 ft/s. Calculate the...Ch. 6 - Plot the speed of air versus the dynamic pressure...Ch. 6 - Water flows in a pipeline. At a point in the line...Ch. 6 - In a pipe 0.3 m in diameter, 0.3 m3/s of water are...Ch. 6 - A jet of air from a nozzle is blown at right...Ch. 6 - The inlet contraction and test section of a...Ch. 6 - Maintenance work on high-pressure hydraulic...Ch. 6 - An open-circuit wind tunnel draws in air from the...Ch. 6 - Water is flowing. Calculate H(m) and p(kPa). P6.36Ch. 6 - If each gauge shows the same reading for a flow...Ch. 6 - Derive a relation between A1 and A2 so that for a...Ch. 6 - Water flows steadily up the vertical 1...Ch. 6 - Your car runs out of gas unexpectedly and you...Ch. 6 - A tank at a pressure of 50 kPa gage gets a pinhole...Ch. 6 - The water flow rate through the siphon is 5 L/s,...Ch. 6 - Water flows from a very large tank through a 5 cm...Ch. 6 - Consider frictionless, incompressible flow of air...Ch. 6 - A closed tank contains water with air above it....Ch. 6 - Water jets upward through a 3-in.-diameter nozzle...Ch. 6 - Calculate the rate of flow through this pipeline...Ch. 6 - A mercury barometer is carried in a car on a day...Ch. 6 - A racing car travels at 235 mph along a...Ch. 6 - The velocity field for a plane source at a...Ch. 6 - A smoothly contoured nozzle, with outlet diameter...Ch. 6 - Water flows steadily through a 3.25-in.-diameter...Ch. 6 - A flow nozzle is a device for measuring the flow...Ch. 6 - The head of water on a 50 mm diameter smooth...Ch. 6 - Water flows from one reservoir in a 200-mm pipe,...Ch. 6 - Barometric pressure is 14.0 psia. What is the...Ch. 6 - A spray system is shown in the diagram. Water is...Ch. 6 - Water flows out of a kitchen faucet of...Ch. 6 - A horizontal axisymmetric jet of air with...Ch. 6 - The water level in a large tank is maintained at...Ch. 6 - Many recreation facilities use inflatable bubble...Ch. 6 - Water flows at low speed through a circular tube...Ch. 6 - Describe the pressure distribution on the exterior...Ch. 6 - An aspirator provides suction by using a stream of...Ch. 6 - Carefully sketch the energy grade lines (EGL) and...Ch. 6 - Carefully sketch the energy grade lines (EGL) and...Ch. 6 - Water is being pumped from the lower reservoir...Ch. 6 - The turbine extracts power from the water flowing...Ch. 6 - Consider a two-dimensional fluid flow: u = ax + by...Ch. 6 - The velocity field for a two-dimensional flow is...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - The flow field for a plane source at a distance h...Ch. 6 - The stream function of a flow field is = Ax2y ...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - A flow field is characterized by the stream...Ch. 6 - The stream function of a flow field is = Ax3 ...Ch. 6 - A flow field is represented by the stream function...Ch. 6 - Consider the flow field represented by the...Ch. 6 - Show by expanding and collecting real and...Ch. 6 - Consider the flow field represented by the...Ch. 6 - An incompressible flow field is characterized by...Ch. 6 - Consider an air flow over a flat wall with an...Ch. 6 - A source with a strength of q = 3 m2/s and a sink...Ch. 6 - The velocity distribution in a two-dimensional,...Ch. 6 - Consider the flow past a circular cylinder, of...Ch. 6 - The flow in a corner with an angle can be...Ch. 6 - Consider the two-dimensional flow against a flat...Ch. 6 - A source and a sink with strengths of equal...Ch. 6 - A flow field is formed by combining a uniform flow...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An incompressible frictionless flow field is given by V = (Ax + By)i + (Bx – Ay)j where A 1 s1 and B = 3 st, and x and y are in meters. The fluid is water and gravitational %D acceleration = 9.81 m/s? in the y-direction. (a) Determine the magnitude and direction of the acceleration vector (b) Determine the pressure gradients in both x- and y-directions at (x, y) = (2, 2) Hint: use Euler's Equation to determine pressure gradients.arrow_forwardIn a wind tunnel lab, the pitot tube is located at the height of 2 m, the measured static pressure P=1.0 Pa, total pressure P₁-88 Pa, if we assume the flow in the test section follow the profile of exponential function with a-0.22. Please calculated the wind velocity at the height of 1m. p=1.22kg/m³. (continued 1) Measured pressures at points A, B and C as follows: P-25 Pa, P=-55 Pa, P=-43 Pa, please calculate the wind pressure coefficients based on the reference wind velocity pressure at 1 m. A Carrow_forwardIn a wind tunnel lab, the pitot tube is located at the height of 2 m, the measured static pressure Po=1.0 Pa, total pressure PT=88 Pa, if we assume the flow in the test section follow the profile of exponential function with a=0.22. Please calculated the wind velocity at the height of Im. pa=1.22kg/m³.arrow_forward
- Consider the flow field V = (ay+dx)i + (bx-dy)j + ck, where a(t), b(t), c(t), and d(t) are time dependent coefficients. Prove the density is constant following a fluid particle, then find the pressure gradient vector gradP, Γ for a circular contour of radius R in the x-y plane (centered on the origin) using a contour integral, and Γ by evaluating the Stokes theorem surface integral on the hemisphere of radius R above the x-y plane bounded by the contour.arrow_forwardSolvearrow_forwardQ: Consider fully developed laminar flow in the annular space formed by the two concentric cylinders shown in the below diagram. The outer pipe is stationary, and the inner pipe moves in the x direction with speed V For pressure gradient, , and the inner cylinder stationary, let ro = R and r = kR, The velocity profile is ax given by: др + 4μ. θα Find: 1- Volume flow rate (Q). 2- An expression for the average velocity (V) 3- Fork → 0, find Q and V 6arrow_forward
- The velocity field of a flow is given by V= axyi + by^2j where a = 1 m^-1s^-1 and b = - 0.5 m^-1s^-1. The coordinates are in meters. Determine whether the flow field is three-, two-, or one-dimensional. Find the equations of the streamlines and sketch several streamlines in the upper half planearrow_forwardThe velocity monitoring of a fluid is u = 48xy v = N. (48 + x2 + y2) Find the current function. Is there a vortex in the flow? Can the flow be compressed?arrow_forwardA constant-thickness film of viscous liquid (SG = 0.8, μ = 0.5 Pa-s) flows down an inclined plate an angle of 10⁰ as shown in the figure The velocity profile is given by the equation, u(y) = Cy(2h — y). If the value of his 5 cm, what is the value of the maximum velocity in m/s? NOTE: The pressure does not vary along the flow direction. u(y) Answer:arrow_forward
- A pipeline of constant 0.6 diameter with its centerline in the horizontal plane turns through an m U2 of 75° (Figure angle pipeline carries water at the rate of 0.85 m3/s. A pressure gauge at 3). The she bend indicates that the pressure is equivalent to 41.3 m of water. Calculate the force exerted U1 on the bend by the water and the direction it acts. Fiaure 3 1080 acearrow_forwardThe pipe flow in figure is driven by pressurized air in the tank. What gage pressure (P1) is needed to provide a water flow rate (60 m/h) take (v = 1.15*10 m2/sec).If the (P1 =700Kpa) and the fluid specific gravity is (0.68).estimate the viscosity of the fluid if the flow rate is ( 27 m/sec). 30 m Smoxoth pipe: d = 5 cn Open jet 80 m 10 m - 60 m 86arrow_forwarddont know where to start.. i am given the equationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License