Heating Ventilating and Air Conditioning: Analysis and Design
Heating Ventilating and Air Conditioning: Analysis and Design
6th Edition
ISBN: 9780471470151
Author: Faye C. McQuiston, Jeffrey D. Spitler, Jerald D. Parker
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 3.57P

A research building requires 100 percent outdoor ventilation air 24 hours a day. This causes a high latent cooling load relative to the sensible load. The peak cooling load is 100,000 Btu/hr (29.3 kW) with a SHF of 0.5. A coil configuration available has an apparatus dew point temperature of 45 F (7 C) and can cool outdoor air from 85 F (29 C) db, 70 F (21 C) wb, to 51 F (11 C) wb. The space is to be maintained at 73 F (24 C) db and 50% relative humidity (RH). Assume constant air flow and standard sea-level pressure. (a) Layout processes on Chart ia for a system to accommodate the given requirements. (b) That quantity of air must be supplied to handle the peak load? (c) Determine other unknown quantities such as coil load, reheat, etc.

Blurred answer
Students have asked these similar questions
Which of the three air-conditioning possible systems listed below should be used to maintain the indoor temperature of a house at 20°C while resulting in a daily lower operating cost when the outdoor temperature is -2°C. Based on the construction of the house you estimate that under the given indoor and outdoor temperatures the rate of heat loss to the surroundings is 17 kJ/s. Which system would you recommend as a feasible alternative? Support your answer for each one of the cases below with convincing computations that show which one of the systems is requires the minimum electrical power while being in compliance with the first and second law of thermodynamics. a. Electrical heating b. A heat pump with COPHP = 3.0 c. A heat pump with COP = 14.0
An air conditioning system is designed under the following conditions Outdoor conditions; 30°C dbt, 75% RH Required indoor conditions; 22°C dbt, 70% RH Amount of free air circulated; 3.33 m/sec Coil dew point temperature; 14°C The required condition is achieved first by cooling and dehumi dification and then by heating. Estimate (1) Capacity of cooling coil intons and its efficiency. (ii) Capacity of heating coil in kW. ii) Amount of water vapour removed kg/sec.
A- Specify is the following conditions are comfort or not: 1- DBT 22 C° and WBT = 16 Cº 2- DBT=24 C° and RH= 80 % B- Compare between the following: 1- Cooling load and the heat gain. 2- Overall heat transfer coefficient and convection heat transfer coefficient.

Chapter 3 Solutions

Heating Ventilating and Air Conditioning: Analysis and Design

Ch. 3 - The environmental conditions in a room are to be...Ch. 3 - Air enters a cooling coil at the rate of 5000 cfm...Ch. 3 - Air flowing in a duct has dry and wet bulb...Ch. 3 - Air is humidified with the dry bulb temperature...Ch. 3 - Air at 38 C db and 20 C wb is humidified...Ch. 3 - Two thousand cfm (1.0 m3/s) of air at an initial...Ch. 3 - Air at 40 F (5 C) db and 35 F (2 C) wb is mixed...Ch. 3 - Rework Problem 3-25, using Chart 1a, with the...Ch. 3 - The design cooling load for a zone in a building...Ch. 3 - Assume that the air in Problem 3-22 is supplied to...Ch. 3 - The sensible heat loss from a space is 500,000...Ch. 3 - Air enters a refrigeration coil at 90 Fdb and 75...Ch. 3 - A building has a total heating load of 200,000...Ch. 3 - Reconsider Problem 3-36 for an elevation of 5000...Ch. 3 - The system of Problem 3-34 has a supply air fan...Ch. 3 - An evaporative cooling system is to be used to...Ch. 3 - A cooling system is being designed for use at high...Ch. 3 - Consider a space heating system designed as shown...Ch. 3 - A variable-air-volume VAV cooling system is a type...Ch. 3 - Rework Problem 3-43 for an elevation of 5000 feet...Ch. 3 - The design condition for a space is 77 F (25 C) db...Ch. 3 - Rework Problem 3-45 for an elevation of 5000 feet...Ch. 3 - It is necessary to cool and dehumidify air from 80...Ch. 3 - Conditions in one zone of a dual-duct conditioning...Ch. 3 - Rework Problem 3-48 for an elevation of 5000 ft...Ch. 3 - A water coil in Problem 3-48 cools return air to...Ch. 3 - A multizone air handler provides air to several...Ch. 3 - Under normal operating conditions a zone has a...Ch. 3 - An interior zone of a large building is designed...Ch. 3 - Outdoor air is mixed with room return air to...Ch. 3 - Consider an enclosed swimming pool. The pool area...Ch. 3 - One particular zone served by a multizone air...Ch. 3 - A research building requires 100 percent outdoor...Ch. 3 - A space requires cooling in the amount of 120,000...

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Check whether the dimensions in the given quantities are correct or not.

Thinking Like an Engineer: An Active Learning Approach (4th Edition)

The value of ∂T/∂y at surface A.

Introduction to Heat Transfer

What parts are included in the vehicle chassis?

Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY