Under normal operating conditions a zone has a total cooling load of 120,000 Btu/hr (35 kW) with a SHF of 0.8. The space is to be maintained at 74 F (23 C) db and 50% relative humidity (RH). However, there are periods when the latent load is high and the SHF is estimated to be as low as 0.6. Assume that air enters the cooling coil at 8 F (29 C) db and 71 F (22 C) wb and the coil apparatus dew point is 48 F (9 C). (a) Devise a system and the associated psychrometric processes to cover the necessary range of operation. b) Define the various air states and show the processes on Chart ia. (c) Compute air-flow rate, coil load, minimum zone load, and any reheat that may be required. Assume constant air flow and standard sea-level pressure.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Heating Ventilating and Air Conditioning: Analysis and Design
Additional Engineering Textbook Solutions
Modern Database Management
Electric Circuits. (11th Edition)
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Degarmo's Materials And Processes In Manufacturing
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
- The design condition for a space is 77oF db and 50% relative humidity with 55oF db supply air at 90% relative humidity. A 50-ton, constant-volume space air- conditioning system uses face and bypass and water temperature control. Outdoor air is supplied at 95oF db, 60% relative humidity with a ratio of 1 lbm to 5 lbm re-circulated air. A part-load condition exists where the total space load is decreased by 50% and the SHF is increased to 90%. The outdoor air condition changes to 85oF db and 70% relative humidity. Assume sea-level conditions. a) At full – load conditions:a. Show all the processes on a psychrometric chart.b. Determine the temperature must the air be supplied to the space at fullload conditions.c. Determine the apparatus dew point temperature at full load conditions. b)At part – load conditions:a. Show all the processes on a psychrometric chart.b. Determine the temperature must the air be supplied to the space at partload conditions.c. Determine the apparatus dew point…arrow_forwardAir Conditioning Thermo Fluidarrow_forwardA space is to be maintained at 75 F db and 40% relative humidity. The total heat gain to the space is 62,000 Btu/hr with a SHF of 0.8. The outdoor air requirement is 500 cfm. The outdoor air has a temperature of 90 F and 50% relative humidity. Assume that the supply air has a temperature of 50 F db. Determine the following: a. Quantity of supplied air b. Capacity of the cooling coil c. Rate of moisture removal from the dehumidification elementarrow_forward
- P=19 Moist air goes into air-conditioning unit at a degree-30 C and 70% relative humidity, and it is cooled to 20-degree C and 20% relative humidity at a constant pressure of 1.01325 bar. The mass flow rate of dry air is mda=63 kg/s The unit applies refrigerant R-134a as the cooling fluid that enters inside the tubes of the cooling coil at 3.6 bar with a quality of 0.2 and leaves as a saturated vapor at the same pressure of 3.6 bar. Use the psychometric chart to determine: a) Mass flow rate of condensed water in kg/s b) The heat transfer rate from the air to the cooling coil in kW (Use the psychometric chart) c) The mass flow rate of R-134a that is needed in kg/sarrow_forwardThermo Fluid help needed air conditionerarrow_forwardASHRAE standard 62.2 states that the minimum acceptable rate of airflow into and out of a room is 15cfm (cubic feet per minute). If air is supplied at 68°F with a relative humidity of 45%, how many gallons of water (minimum) must be added to a portable room humidifier before you go to sleep if you would like to maintain the room at 65% humidity for 7 hours?arrow_forward
- Problem 2: An air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and a humidifier that supplies wet steam (saturated water vapor) at 100 degrees celsius. Air enters the heating section at 10 degrees celsius and 70 percent relative humidity at a rate of 35 m^3/min, and it leaves the humidifying section at 20 degree celcius and 60 percent relative humidity. Heating coils Leeeeeeee 10°℃ 70% 35 m³/min AIR P = 1 atm Sat. vapor 100°C Humidifier 20°C 60% a. Humidity ratio at inlet b. Relative humidity at the exit c. Humidity ratio at exit d. Rate at which water is added to humidifying sectionarrow_forwardA space is to be maintained at 22C and 50% relative humidity. The sensible heat load is 100 kW, and the latent heat load is 15 kW. Outside air is at 38C DB and 25C WB temp. Air is supplied to the space at 13C. If all-outside air system (no recirculation) is to be implemented, determine: (a) the cooling capacity in tons; (b) capacity of supply air fan in cmh; and (c) the coil bypass factor.arrow_forwardAir Conditionarrow_forward
- Help needed for Air Conditioning pleasearrow_forwardPick the right combination of True Statements. 1. As the by-pass factor (BPF) of the cooling coil increases, temperature difference between air at the outlet of the coil and coil ADP decreases. 2. As the by-pass factor (BPF) of the cooling coil increases, temperature difference between air at the outlet of the coil and coil ADP increases. 3. During cooling and humidification process, the enthalpy of air may increase, decrease or remain constant depending upon the temperature of the wet surface. 4. During sensible cooling of air, dry bulb temperature decreases but wet bulb temperature remains constant 5. The sensible heat factor for a sensible heating process is 1.0arrow_forwardplease answer do not image formatarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY