Heating Ventilating and Air Conditioning: Analysis and Design
Heating Ventilating and Air Conditioning: Analysis and Design
6th Edition
ISBN: 9780471470151
Author: Faye C. McQuiston, Jeffrey D. Spitler, Jerald D. Parker
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 3.36P

A building has a total heating load of 200,000 Btu/hr. The sensible heat factor for the space is 0.8 and the space is to be maintained at 72 F db and 30 percent relative humidity. Outdoor air at 40 F db and 20 percent relative humidity in the amount of 1000 cfm is required. Air is supplied to the space at 120 F db. Water vapor with enthalpy of 1150 Btu/lbma is used to humidify the air. Find (a) the conditions and amount of air supplied to the space, (b) the temperature rise of the air through the furnace, (c) the amount of water vapor required, and (d) the capacity of the furnace. Assume sea-level pressure.

Blurred answer
Students have asked these similar questions
A space is to be maintained at 22C and 50% relative humidity. The sensible heat load is 100 kW, and the latent heat load is 15 kW. Outside air is at 38C DB and 25C WB temp. Air is supplied to the space at 13C. If all-outside air system (no recirculation) is to be implemented, determine: (a) the cooling capacity in tons; (b) capacity of supply air fan in cmh; and (c) the coil bypass factor.
The cooling load calculations on a theatre show that at design conditions the sensible heat load is 200 kw and the latent heat load is 70 kw. The indoor design conditions are 26°C dry bulb and50% relative humidity. Air is to be supplied to the theatre at 16°C while the outside airis at 30°C dry bulb and 60% relative humidity. Take ventilating air as 25% of the supply air. Calculate the tons of refrigeration required by the conditioner.
room contains air at 30 degrees * C and a total pressure of 96.0 kPa with a relative humidity of 75 percen ermine (a) the partial pressure of dry air and (b) the specific humidity.

Chapter 3 Solutions

Heating Ventilating and Air Conditioning: Analysis and Design

Ch. 3 - The environmental conditions in a room are to be...Ch. 3 - Air enters a cooling coil at the rate of 5000 cfm...Ch. 3 - Air flowing in a duct has dry and wet bulb...Ch. 3 - Air is humidified with the dry bulb temperature...Ch. 3 - Air at 38 C db and 20 C wb is humidified...Ch. 3 - Two thousand cfm (1.0 m3/s) of air at an initial...Ch. 3 - Air at 40 F (5 C) db and 35 F (2 C) wb is mixed...Ch. 3 - Rework Problem 3-25, using Chart 1a, with the...Ch. 3 - The design cooling load for a zone in a building...Ch. 3 - Assume that the air in Problem 3-22 is supplied to...Ch. 3 - The sensible heat loss from a space is 500,000...Ch. 3 - Air enters a refrigeration coil at 90 Fdb and 75...Ch. 3 - A building has a total heating load of 200,000...Ch. 3 - Reconsider Problem 3-36 for an elevation of 5000...Ch. 3 - The system of Problem 3-34 has a supply air fan...Ch. 3 - An evaporative cooling system is to be used to...Ch. 3 - A cooling system is being designed for use at high...Ch. 3 - Consider a space heating system designed as shown...Ch. 3 - A variable-air-volume VAV cooling system is a type...Ch. 3 - Rework Problem 3-43 for an elevation of 5000 feet...Ch. 3 - The design condition for a space is 77 F (25 C) db...Ch. 3 - Rework Problem 3-45 for an elevation of 5000 feet...Ch. 3 - It is necessary to cool and dehumidify air from 80...Ch. 3 - Conditions in one zone of a dual-duct conditioning...Ch. 3 - Rework Problem 3-48 for an elevation of 5000 ft...Ch. 3 - A water coil in Problem 3-48 cools return air to...Ch. 3 - A multizone air handler provides air to several...Ch. 3 - Under normal operating conditions a zone has a...Ch. 3 - An interior zone of a large building is designed...Ch. 3 - Outdoor air is mixed with room return air to...Ch. 3 - Consider an enclosed swimming pool. The pool area...Ch. 3 - One particular zone served by a multizone air...Ch. 3 - A research building requires 100 percent outdoor...Ch. 3 - A space requires cooling in the amount of 120,000...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY