Heating Ventilating and Air Conditioning: Analysis and Design
Heating Ventilating and Air Conditioning: Analysis and Design
6th Edition
ISBN: 9780471470151
Author: Faye C. McQuiston, Jeffrey D. Spitler, Jerald D. Parker
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 3.54P

Outdoor air is mixed with room return air to reduce the refrigeration load on a cooling coil. (a) For a space condition of 77 F (25 C) db and 68 F (20 C) wb, describe the maximum wet bulb and dry bulb temperatures that will reduce the coil load. (b) Suppose a system is designed to supply 10,300 cfm (5 m3/s) at 64 F (18 C) db and 63 F (17 C) wb to a space maintained at the conditions given in part (a) above. What amount of outdoor air at 68 F (20 C) db and 90 percent relative humidity can be mixed with the return air if the coil SHF is 0.6? (c) What is the apparatus dew point in part (b) above? (d) Compare the coil refrigeration load in part (b) above with the outdoor air to that without outdoor air. Assume sea-level pressure.

Blurred answer
Students have asked these similar questions
1. Moist air enters a refrigeration coil at 89 F dry-bulb temperature and 65 F thermodynamic wet bulb temperature at a rate of 14oo cu ft per min. The surface temperature of the coil is 55 F . If 3.5 tons of refrigeration are available, find the dry bulb and wet bulb temperatures of the air leaving the coil. Assume sea level pressure.
1) Given 753.06 kW electrical power supplied to a boiler when the temperature of the entering water is 20 C and the exiting temperature is 89 C. The flow of the pressured water is 2 Kg/s. There is a negligible pressure drop through this boiler and it operates at a constant pressure of 3 bars. The specific heat is c = 4,370 J/(Kg K). There is a 1.5(10^5) W rate of heat loss from the boiler during this process to a surrounding at 293.2 k. Answer the following: a) Calculate the exergy destroyed in the process below. The exergy of the fuel entering this process is 51.82 MJ/Kg. The dead state temperature is 293.2 K and pressure is 1 bar. The products of combustion leave this process at the dead state. Process: 0.015 kg is the mass flowrate of fuel (natural gas, CH4) required to heat the water flow to the conditions of the problem above. if the electrical heating device is replaced with a gas fired boiler. The high heating value (HHV) of the fuel is 50.02 MJ/kg. b) The utility providing the…
The following data refer to summer air conditioning of a building: Outside design conditions 43 °C DBT, 27 °C WBT Inside design condition 25 °C DBT, 50% RH Room sensible heat gain 84000 kJ/h Room latent heat gain 21000 kJ/h BPF of cooling coil 0.2 The return air from the room is mixed with the outside air before entry to cooling coil in the ratio of 4:1 by mass. Determine: (a) Apparatus dew point of the cooling coil (b) Entry and exit conditions of air for cooling coil (c) Fresh air mass flow rate and (d) Refrigeration load on the cooling coil.

Chapter 3 Solutions

Heating Ventilating and Air Conditioning: Analysis and Design

Ch. 3 - The environmental conditions in a room are to be...Ch. 3 - Air enters a cooling coil at the rate of 5000 cfm...Ch. 3 - Air flowing in a duct has dry and wet bulb...Ch. 3 - Air is humidified with the dry bulb temperature...Ch. 3 - Air at 38 C db and 20 C wb is humidified...Ch. 3 - Two thousand cfm (1.0 m3/s) of air at an initial...Ch. 3 - Air at 40 F (5 C) db and 35 F (2 C) wb is mixed...Ch. 3 - Rework Problem 3-25, using Chart 1a, with the...Ch. 3 - The design cooling load for a zone in a building...Ch. 3 - Assume that the air in Problem 3-22 is supplied to...Ch. 3 - The sensible heat loss from a space is 500,000...Ch. 3 - Air enters a refrigeration coil at 90 Fdb and 75...Ch. 3 - A building has a total heating load of 200,000...Ch. 3 - Reconsider Problem 3-36 for an elevation of 5000...Ch. 3 - The system of Problem 3-34 has a supply air fan...Ch. 3 - An evaporative cooling system is to be used to...Ch. 3 - A cooling system is being designed for use at high...Ch. 3 - Consider a space heating system designed as shown...Ch. 3 - A variable-air-volume VAV cooling system is a type...Ch. 3 - Rework Problem 3-43 for an elevation of 5000 feet...Ch. 3 - The design condition for a space is 77 F (25 C) db...Ch. 3 - Rework Problem 3-45 for an elevation of 5000 feet...Ch. 3 - It is necessary to cool and dehumidify air from 80...Ch. 3 - Conditions in one zone of a dual-duct conditioning...Ch. 3 - Rework Problem 3-48 for an elevation of 5000 ft...Ch. 3 - A water coil in Problem 3-48 cools return air to...Ch. 3 - A multizone air handler provides air to several...Ch. 3 - Under normal operating conditions a zone has a...Ch. 3 - An interior zone of a large building is designed...Ch. 3 - Outdoor air is mixed with room return air to...Ch. 3 - Consider an enclosed swimming pool. The pool area...Ch. 3 - One particular zone served by a multizone air...Ch. 3 - A research building requires 100 percent outdoor...Ch. 3 - A space requires cooling in the amount of 120,000...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license