Thermodynamics, Statistical Thermodynamics, & Kinetics
3rd Edition
ISBN: 9780321766182
Author: Thomas Engel, Philip Reid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.10NP
Interpretation Introduction
Interpretation:Theexpression for calculating the isothermal changes in the constant volume heat capacity needs to be derived:
Concept Introduction:
Different thermodynamic properties like enthalpy, entropy, free energy etc. are used to define different properties like volume, pressure and heat capacity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sample of argon of mass 6.56 g occupies 18.5 dm3 at 305 K.(i) Calculate the work done when the gas expands isothermally against a constant external pressure of 7.7 kPa until its volume has increased by 2.5 dm3. (ii) Calculate the work that would be done if the same expansion occurred reversibly.
Nitesh
When 229 J of energy is supplied as heat to 3.00 mol Ar(g), the temperature of the sample increases by 2.55 K. Calculate the molar heat capacities at constant volume and constant pressure of the gas.
Chapter 3 Solutions
Thermodynamics, Statistical Thermodynamics, & Kinetics
Ch. 3 - Prob. 3.1CPCh. 3 - Prob. 3.2CPCh. 3 - Prob. 3.3CPCh. 3 - Prob. 3.4CPCh. 3 - Why can qv be equated with a state function if q...Ch. 3 - Prob. 3.6CPCh. 3 - Prob. 3.7CPCh. 3 - Prob. 3.8CPCh. 3 - Prob. 3.9CPCh. 3 - Why is qv=U only for a constant volume process? Is...
Ch. 3 - Prob. 3.11CPCh. 3 - Why are q and w not state functions?Ch. 3 - Prob. 3.13CPCh. 3 - What is the relationship between a state function...Ch. 3 - Prob. 3.15CPCh. 3 - Is the following statement always, never, or...Ch. 3 - Is the following statement always, never, or...Ch. 3 - Prob. 3.18CPCh. 3 - Prob. 3.19CPCh. 3 - Is the expression UV=T2T1CVdT=nT1T2CV,mdT only...Ch. 3 - Prob. 3.1NPCh. 3 - Prob. 3.2NPCh. 3 - Prob. 3.3NPCh. 3 - Prob. 3.4NPCh. 3 - Prob. 3.5NPCh. 3 - Prob. 3.6NPCh. 3 - Integrate the expression =1/VV/TP assuming that ...Ch. 3 - Prob. 3.8NPCh. 3 - Prob. 3.9NPCh. 3 - Prob. 3.10NPCh. 3 - Prob. 3.11NPCh. 3 - Calculate w, q, H, and U for the process in which...Ch. 3 - Prob. 3.13NPCh. 3 - Prob. 3.14NPCh. 3 - Prob. 3.15NPCh. 3 - Prob. 3.16NPCh. 3 - Prob. 3.17NPCh. 3 - Prob. 3.18NPCh. 3 - Prob. 3.19NPCh. 3 - Prob. 3.20NPCh. 3 - Prob. 3.21NPCh. 3 - Prob. 3.22NPCh. 3 - Derive the following relation, UVmT=3a2TVmVm+b for...Ch. 3 - Prob. 3.24NPCh. 3 - Prob. 3.25NPCh. 3 - Prob. 3.26NPCh. 3 - Prob. 3.27NPCh. 3 - Prob. 3.28NPCh. 3 - Prob. 3.29NPCh. 3 - Prob. 3.30NPCh. 3 - Prob. 3.31NPCh. 3 - Prob. 3.32NPCh. 3 - Prob. 3.33NPCh. 3 - Prob. 3.34NPCh. 3 - Derive the equation H/TV=CV+V/k from basic...Ch. 3 - Prob. 3.36NPCh. 3 - Prob. 3.37NPCh. 3 - Show that CVVT=T2PT2VCh. 3 - Prob. 3.39NP
Knowledge Booster
Similar questions
- What are the numerical values of the heat capacities c-v and c-p of a monatomic ideal gas,in units of cal/mol.K and L.atm/mol.K?arrow_forwardA 1.00 mol sample of H2 is carefully warmed from 22 K to 40 K at constant volume. a What is the expected heat capacity of the hydrogen? b What is q for the process?arrow_forward2. Given the equation S, - S, = dq use appropriate thermodynamic equations T V. to show that S, -S, = nC, In |+ nC, In Pi V,arrow_forward
- When 229 J of energy is supplied as heat at constant pressure to 3.0 mol Ar(g) the temperature of the sample increases by 2.55 K. Calculate the molar heat capacities at constant volume and constant pressure of the gas.arrow_forwardThe definition of enthalpy and the perfect gas equation of state can be used to estimate the standard enthalpy of ionization or electron gain and the corresponding change in internal energy. (a) Starting from Kirchhoff's law, and remembering that the molar constant-pressure heat capacity of aperfect gas is (5)/(2)R, derive an expression for the difference betweenthe change in enthalpy and change in internal energy for a gas-phase process if all species behave as if perfect gases. (b) Hence show that for ionization, ΔionHΘ - ΔionUΘ = (5)/(2)RT. (c) Use this expression to estimate the difference between the standard enthalpy of ionization of Ca(g) to Ca2+(g) and the accompanying change in internal energy at 25 °c. (d) In thesame way, show that for electron gain, ΔegHΘ - ΔegUΘ = -(5)/(2)RT.(e) Hence estimate the difference between the standard electron-gain enthalpy of Br(g) and the corresponding change in internal energy at 25 °c.arrow_forwardEX/ A sample of argon (molar mass 39.9 g/mol') of mass 6.56 g occupies 18.5 dm at 305 K. (a) Calculate the work done when the gas expands isothermally against a constant external pressure of 7.7 kPa until its volume has increased by 2.5 dm. (b) Calculate the work that would be done if the same expansion occurred reversibly.arrow_forward
- A sample of 4.50 g of methane occupies 12.7 dm³ at 310 K. (a) Calculate the work done when the gas expands isothermally against a constant external pressure of 200 Torr until its volume has increased by 3.3 dm³. (b) Calculate the work that would be done if the same expansion occurred reversibly.arrow_forwardWhen 3.0 mol O² is heated at a constant pressure of 3.25 atm, its temperature increases from 260 K to 285 K. Given that the molar heat capacity of O² at constant pressure is 29.4 J K-¹ mol-¹, calculate q, AH, ΔU.arrow_forwardP2D.6 The speed of sound, cs , in a perfect gas of molar mass M is related to the ratio of heat capacities γ by cs = (γRT/M) 1/2. Show that cs = (γp/ρ)1/2, where ρ isthe mass density of the gas. Calculate the speed of sound in argon at 25 °C.arrow_forward
- Calculate the heat and the work associated with a process in which 5.00 mol of gas expands reversibly at constant temperature T = 298 K from a pressure of 10.00 to 1.00 atm.arrow_forwardSuppose that attractions are the dominant interactions between gas molecules, and the equation of state is p = nRT/V − n2a/V2. Derive an expression for the work of reversible, isothermal expansion of such a gas. Compared with a perfect gas, is more or less work done on the surroundings when it expands?arrow_forwardHow much energy does it take to raise the temperature of 1.0 mol H2O(g) from 100 °C to 200 °C at constant volume? Consider only translational and rotational contributions to the heat capacity.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,