Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9.9, Problem 9.16CE
Look in Appendix D and compare the electron configurations shown there with the fusion enthalpies for the metals shown in Table 9.7. Is there any correlation between these configurations and this property? Does strength of attraction among metal atoms correlate with number of valence electrons? Explain your answers.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the following data to calculate the lattice energy of cesium oxide. You
must write all thermochemical equations for the steps of the cycle.
Enthalpy of formation of CSO = -233 kJ/mol
Enthalpy of sublimation of Cs = +78 kJ/mol
First ionization energy of Cs = +375 kJ/mol
Enthalpy of dissociation of O₂ (g) = + 494 kJ/mol
First electron affinity of O = - 141 kJ/mol
Second electron affinity of O = + 845 kJ/mol
-750 kJ/mol
-2090 kJ/mol
+1690 kJ/mol
O -1045 kJ/mol
Your roommate is having trouble understanding why solids form. He asks, “Why would atoms bond into solids rather than just floating freely with respect to each other?” To help him understand at least one type of bonding in solids, you decide to embark on an energy explanation. You show him a drawing of a primitive cell of a sodium chloride crystal, NaCl, or simple table salt. The drawing is shown in the picture below where the orange spheres and Na ions and blue spheres are Cl ions. Each ion has a charge of magnitude equal to the elementary charge e. The ions lie on the corners of a cube of side ‘d’. You explain to your roommate that the electrical potential energy is defined as zero when all eight charges are infinitely far apart from each other. Then you bring them together to form the crystal structure shown.
(a) Evaluate the electric potential energy of the crystal as shown and
(b) show that it is energetically favorable for such crystals to form.
Given the following thermodynamic data, calculate the lattice energy of LiCl:ΔH°f[LiCl(s)] = -409 kJ/molΔH°sublimation [Li] = 161 kJ/molBond energy [Cl-Cl] = 243 kJ/molIE1 (Li) = 520 kJ/molEA1 (Cl) = -349 kJ/mol
-1682 kJ/mol
-984 kJ/mol
-1560 kJ/mol
-862 kJ/mol
-1213 kJ/mol
Chapter 9 Solutions
Chemistry: The Molecular Science
Ch. 9.1 - Prob. 9.1CECh. 9.2 - Prob. 9.2CECh. 9.2 - Prob. 9.1PSPCh. 9.2 - What mass (g) of ethanol, CH3CH2OH(), can be...Ch. 9.3 - Prob. 9.3CECh. 9.3 - Prob. 9.4CECh. 9.3 - Prob. 9.3PSPCh. 9.4 - What types of solids are these substances? (a) The...Ch. 9.4 - Prob. 9.5PSPCh. 9.4 - Prob. 9.5E
Ch. 9.4 - Prob. 9.6CECh. 9.4 - Sublimation is an excellent means of purification...Ch. 9.4 - Prob. 9.6PSPCh. 9.4 - Prob. 9.8ECh. 9.4 - Prob. 9.9ECh. 9.5 - Predict which liquid—glycerol, HOCH2CH(OH)CH2OH,...Ch. 9.5 - Prob. 9.11CECh. 9.6 - Crystalline polonium has a primitive cubic unit...Ch. 9.6 - Calculate the unit cell edge length of copper...Ch. 9.6 - Vanadium metal crystallizes in a body-centered...Ch. 9.6 - Prob. 9.13ECh. 9.6 - Prob. 9.14ECh. 9.6 - Prob. 9.9PSPCh. 9.9 - Prob. 9.10PSPCh. 9.9 - The graph below is obtained when a liquid metal is...Ch. 9.9 - Look in Appendix D and compare the electron...Ch. 9.11 - Prob. 9.11PSPCh. 9 - Prob. ISPCh. 9 - Prob. IISPCh. 9 - Prob. IIISPCh. 9 - Prob. 1QRTCh. 9 - Prob. 2QRTCh. 9 - Prob. 3QRTCh. 9 - Prob. 4QRTCh. 9 - Prob. 5QRTCh. 9 - Prob. 6QRTCh. 9 - Which processes are endothermic? (a) Condensation...Ch. 9 - Prob. 8QRTCh. 9 - Prob. 9QRTCh. 9 - Prob. 10QRTCh. 9 - Prob. 11QRTCh. 9 - Prob. 12QRTCh. 9 - Prob. 13QRTCh. 9 - After exercising on a hot summer day and working...Ch. 9 - Prob. 15QRTCh. 9 - The molar vaporization enthalpy of methanol is...Ch. 9 - Prob. 17QRTCh. 9 - Mercury is highly toxic. Although it is a liquid...Ch. 9 - Prob. 19QRTCh. 9 - Prob. 20QRTCh. 9 - Prob. 21QRTCh. 9 - Prob. 22QRTCh. 9 - Prob. 23QRTCh. 9 - Prob. 24QRTCh. 9 - Prob. 25QRTCh. 9 - Prob. 26QRTCh. 9 - A liquid has a vapH of 38.7 kJ/mol and a boiling...Ch. 9 - Prob. 28QRTCh. 9 - The vapor pressure of ethanol, C2H5OH, at 50.0 C...Ch. 9 - Prob. 30QRTCh. 9 - Prob. 31QRTCh. 9 - Prob. 32QRTCh. 9 - Which would you expect to have the higher fusion...Ch. 9 - Prob. 34QRTCh. 9 - Prob. 35QRTCh. 9 - Prob. 36QRTCh. 9 - Prob. 37QRTCh. 9 - Prob. 38QRTCh. 9 - Prob. 39QRTCh. 9 - Prob. 40QRTCh. 9 - Prob. 41QRTCh. 9 - Prob. 42QRTCh. 9 - Prob. 43QRTCh. 9 - Prob. 44QRTCh. 9 - At the critical point for carbon dioxide, the...Ch. 9 - Prob. 46QRTCh. 9 - Prob. 47QRTCh. 9 - On the basis of the description given, classify...Ch. 9 - On the basis of the description given, classify...Ch. 9 - Prob. 50QRTCh. 9 - Prob. 51QRTCh. 9 - Prob. 52QRTCh. 9 - Prob. 53QRTCh. 9 - Prob. 54QRTCh. 9 - Prob. 55QRTCh. 9 - Prob. 56QRTCh. 9 - Prob. 57QRTCh. 9 - Prob. 58QRTCh. 9 - Prob. 59QRTCh. 9 - Prob. 60QRTCh. 9 - Prob. 61QRTCh. 9 - The ionic radii of Cs+ and Cl are 181 and 167 pm,...Ch. 9 - Prob. 63QRTCh. 9 - Prob. 64QRTCh. 9 - Prob. 65QRTCh. 9 - Tungsten has a body-centered cubic unit cell and...Ch. 9 - Prob. 67QRTCh. 9 - Prob. 68QRTCh. 9 - Prob. 69QRTCh. 9 - Prob. 70QRTCh. 9 - Prob. 71QRTCh. 9 - Prob. 72QRTCh. 9 - Prob. 73QRTCh. 9 - Prob. 74QRTCh. 9 - Prob. 75QRTCh. 9 - Prob. 76QRTCh. 9 - Prob. 77QRTCh. 9 - Prob. 78QRTCh. 9 - Prob. 79QRTCh. 9 - Prob. 80QRTCh. 9 - Which substance has the greatest electrical...Ch. 9 - Prob. 82QRTCh. 9 - Prob. 83QRTCh. 9 - Prob. 84QRTCh. 9 - Prob. 85QRTCh. 9 - Prob. 86QRTCh. 9 - What makes a glass different from a crystalline...Ch. 9 - Prob. 88QRTCh. 9 - Prob. 89QRTCh. 9 - Prob. 90QRTCh. 9 - Will a closed container of water at 70 C or an...Ch. 9 - Prob. 92QRTCh. 9 - Prob. 95QRTCh. 9 - Prob. 96QRTCh. 9 - Prob. 97QRTCh. 9 - Prob. 98QRTCh. 9 - Prob. 99QRTCh. 9 - Prob. 100QRTCh. 9 - Prob. 101QRTCh. 9 - Prob. 102QRTCh. 9 - Prob. 103QRTCh. 9 - Consider this information regarding two compounds....Ch. 9 - Prob. 105QRTCh. 9 - Prob. 106QRTCh. 9 - If you get boiling water at 100 C on your skin, it...Ch. 9 - Prob. 108QRTCh. 9 - The normal boiling point of SO2 is 263.1 K and...Ch. 9 - Butane is a gas at room temperature; however, if...Ch. 9 - Prob. 111QRTCh. 9 - Examine the nanoscale diagrams and the phase...Ch. 9 - Consider the phase diagram and heating-curve...Ch. 9 - Prob. 115QRTCh. 9 - Prob. 116QRTCh. 9 - The phase diagram for water over a relative narrow...Ch. 9 - Prob. 118QRTCh. 9 - Prob. 119QRTCh. 9 - Prob. 120QRTCh. 9 - Prob. 121QRTCh. 9 - Prob. 122QRTCh. 9 - Titanium metal crystallizes in a body-centered...Ch. 9 - Prob. 9.ACPCh. 9 - Prob. 9.BCPCh. 9 - Prob. 9.CCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The lattice energy of magnesium sulfide is the energy change accompanying the process Mg2*(g) + + S2-(g) → MgS(s) Calculate the lattice energy of MgS using the following data: Mg(s) → Mg(g) AH° = 148 kJ/mol Mg(g) → Mg2*(g) + 2e- AH° = 2186 kJ/mol Sg(s) → 8S(g) AH° = 2232 kJ/mol S(g) + 2e-- s2-(g) AH° = 450 kJ/mol 8Mg(s) + Sg(s) → 8MGS(s) AH° = -2744 kJ/mol Mg2*(g) + S2-(g)→ MgS(s) AH°lattice = ?arrow_forward1) Write the balanced reaction between magnesium and oxygen to create 1 mole of magnesium oxide. Show the calculation of the theoretical enthalpy of reaction using the heats of formation values from your textbook. Show all your work including all phase labels. Report your answer in kJ/1 mole of magnesium.arrow_forwardDefine valency by taking examples of silicon and sulphur?arrow_forward
- Calculate the lattice energy of ionic solid MX, given the following thermodynamic data: M(s) + X2(9) → MX(s) AHræn M(s) → M(g) AHrän= 88. kJ Bond energy of X2 = 196. kJ/mol lonization energy for M(s) = 485. kJ /mol Electron affinity of X = -281. kJ/mol AHrxn = -616. Enter your answer in decimal notation, rounded to the appropriate number of significant figures.arrow_forwardThe ionisation energy of potassium is 4.34 eV and the electron affinity of chlorine is 3.61 eV. The Madelung constant for the KCl structure is 1.748 and the closest distance between ions of opposite sign is 0.314 nm. On the basis of these data, calculate the cohesive energy of KCl. Compare this with the observed cohesive energy of 6.42 eV for the ion pair and comment on the reasons for any discrepancyarrow_forwardThe attractive force between a pair of Sr2+ and O2- ions is 1.52 x 108 N and the ionic radius of O2- ions is 0.134 nm. Calculate the ionic radius of the Sr2+ ion. (Given: Electron charge, e = 1.6 x 101ºC, the permittivity of free space, Eo = 8.85 x 101ºC²N'm²)arrow_forward
- Calculate the lattice energy of TIF (s) using the following thermodynamic data (all data is in kJ/mol). Note that the data given has been perturbed, so looking up the answer is probably not a good idea. TI (S) TI (g) F - F (g) F (g) TIF (s) AHsublimation = 161 kJ/mol Ionization energy = 569 kJ/mol Bond energy = 138 kJ/mol Electron affinity = -348 kJ/mol AH°f = -345 kJ/mol kJ/molarrow_forwardFor ionic lattices, explain why the nearest neighbors of cations are anions and vice versa.arrow_forwardCalculate the lattice enthalpy for RbC1. You will need the following information: Species AfH°, kJ/mol Rb(g) RbCl(s) Cl(g) 80.9 - 435.4 121.3 Enthalpy of ionization for Rb(g) is 403.0 kJ/mol; electron attachment enthalpy for Cl(g) is −349.0 kJ/mol. Lattice enthalpy = kJ/molarrow_forward
- In a hydrogen molecule, the two hydrogen atoms are held together by a single bond with a bond energy of 436 kJ/mol of hydrogen. In other words, to break the H-H bonds in one mole of molecular hydrogen requires the expenditure of 436 kJ of energy. Using the balanced chemical equation for the formation of water from oxygen and hydrogen (shown above), and interpreting the stoichiometric coefficients as mole amounts, how much energy must be expended in breaking the H-H bonds? kJarrow_forwardWhich of the following elements reacts with sulfur to form a solid in which the sulfur atoms form a closestpacked array with all of the octahedral holes occupied: Li, Na, Be, Ca, or Al?arrow_forwardA 330 KJ/mol is the sublimation energy of aluminum, and its atomic radius is 118 pm. Discuss mathematically the different between both dodecahedron and icosahedron of aluminumarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Lanthanoids and its Position in Periodic Table - D and F Block Elements - Chemistry Class 12; Author: Ekeeda;https://www.youtube.com/watch?v=ZM04kRxm6tY;License: Standard YouTube License, CC-BY