(a)
Identify the equation have no solution or infinitely many solution.
(a)
Answer to Problem 57HP
Infinitely Many Solution.
Explanation of Solution
Given:
The inequality:
Concept Used:
If an equation is x = a, this means the equation is true only when the variable assumes the value a. The equation has only one solution exists.
If an equation a = a, this means the equation is true for any value of the variable, has infinitely many solution.
If a = b, this means there is no value of the variable that will make a equal to b , has no solution.
Calculation:
The inequality:
Therefore we can conclude that there is infinitely many solutions. Whatever number we put in for the variable x, it'll always give you a true statement.
Thus, this inequality is having infinitely many solutions; the inequality is true for all real values of x.
(b)
Identify the equation have no solution or infinitely many solution.
(b)
Answer to Problem 57HP
No Solution.
Explanation of Solution
Given:
The inequality:
Concept Used:
If an equation is x = a, this means the equation is true only when the variable assumes the value a. The equation has only one solution exists.
If an equation a = a, this means the equation is true for any value of the variable, has infinitely many solution.
If a = b, this means there is no value of the variable that will make a equal to b , has no solution.
Calculation:
The inequality:
No Solution If the coefficients of variable are the same on both sides are equal, but the constants are different, then no solutions will occur.
If the equation ends with a false statement (example: a = b) then you know that there`s no solution.
Thus, this inequality is having no solution.
Chapter 8 Solutions
Glencoe Math Accelerated, Student Edition
Additional Math Textbook Solutions
Basic Business Statistics, Student Value Edition
Calculus: Early Transcendentals (2nd Edition)
Introductory Statistics
Elementary Statistics: Picturing the World (7th Edition)
College Algebra with Modeling & Visualization (5th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
- 1. The average value of f(x) = ✓ on [1,4] and instantaneous rate of change at x = 16 2. f(x) = x³-3x² + 4 Find all relative extrema, inflection point, and the intervals of concavityarrow_forward2. f(x) = x³-3x² +4 Find all relative extrema, inflection point, and the intervals of concavity 5 3. f(x) = 3x3 - 15x3 Find the intervals of increasing, decreasingarrow_forward5 2 3. f(x) = 3x3 - 15x3 Find the intervals of increasing, decreasing 4. If xy+cos y, Findarrow_forward
- #IN A [2 pts.] C 0 II. Consider the circle C r = 4 cos 0 and the line Cr=sec as in the figure on the right. Let A and B be the points of intersection of the two curves as shown. 1. Find the polar coordinates of A and B. 2. Find a Cartesian equation of the tangent line to C at the point where [4 pts.] 3. Set up (and do not evaluate) a definite integral or a sum of definite integrals that yields the follow- ing: a. the length of the portion of C traced counterclockwise from A to B. b. the area of the shaded region. [2 pts.] [3 pts.] B Carrow_forwardI. Perform the following integrations. 1. L' (2x + 1)e³r da cot³ (ln x) csc³ (ln x) 2. dx х 3. 4. x² √1-92 dx 3x3 +14x+7 x² (x²+7) dxarrow_forwardIV. Consider the equation : y + z = 2. 1. Sketch a portion of the graph of π in the first octant in R3. Indicate proper rulings. [2 pts.] 2. Find an equation of the surface generated by revolving the trace of π on the the yz-plane about the y-axis. Sketch the surface of revolution. [3 pts.]arrow_forward
- IV. Consider the function f(x) = esin 2x 1. Find the second-degree Maclaurin polynomial of f(x). 2. Approximate esin 0.02 using the result in IV.1. Express your answer in decimal form.arrow_forwardIII. Find the center-radius form of the equation of the sphere having the line segment with endpoints P(1,-2, 1) and Q(5, 0, 1) as a diameter. [2.5 pts.]arrow_forwardII. Determine if the improper integral is convergent or divergent. 0 2x2 L dx -2 x3+8arrow_forward
- 2+5n2 1. Determine whether the sequence (b) converges or diverges. 2. Determine whether the following series converge or diverge. State the test you us 3n² - n I. Let bn = for n N with n ≥ 1. نے n=1 8 b. (bn)" n=1arrow_forwardII. Determine whether the following series converge or diverge. State the test you used. (4/2/3 po 1 1. n(Inn)2 n=3 2. 8 IM n=1 5" + sin² n 3n 00 1.3 " 3. (2n − 1) (n + 2)! - n=1arrow_forward7. Consider the following parametric curve: x = sint, y = 2 cost, for 0 ≤t≤ a) Eliminate the parameter to find a rectangular equation for the curve. b) Use the parametric equations to find the slope of the tangent line when t = c) Use the parametric equations to set up an integral to represent the arc length of the curve. You do not need to evaluate the integral.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning