An equation and solve
Answer to Problem 11IP
The number of goals is
Explanation of Solution
Given:
In 2007, Candace Parker, from the University of Tennessee, made 37 more field goals then she did in 2006. She has a total of 497 field goals for those years
Concept Used:
Rules of Addition/ Subtraction:
- Two numbers with similar sign always get added and the resulting number will carry the similar sign.
- Two numbers with opposite signs always get subtracted and the resulting number will carry the sign of larger number.
Rules of Multiplication/ Division:
- The product/quotient of two similar sign numbers is always positive.
- The product/quotient of two numbers with opposite signs is always negative.
In order to find an equation
Let x be the number of goals Candace Parker made in 2006 and he made 37 more goals and total goals are 497
The equation as shown below,
Thus, the equation is
In order to find the value of x first subtract both sides by
Thus, the number of goals is
Chapter 8 Solutions
Glencoe Math Accelerated, Student Edition
Additional Math Textbook Solutions
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Calculus: Early Transcendentals (2nd Edition)
A First Course in Probability (10th Edition)
Elementary Statistics (13th Edition)
- 4. Su Write out the first four terms of the Maclaurin series of f(x) if f(0) = -9, f'(0) = 4, f"(0) = -12, f""(0) = 5 f(x) = +... Submit answer Next item Answers Attempt 7 of 7 Answer ][ 0 T The Weather Channel DELL UP P Score F4 F5 F6 F7 F8 % A 5 6 &arrow_forwardH.W Ex find the solution by using Bernoulli method of D.E? dy/dx4y = xy³/2arrow_forwardby series find the Solution U (x) = x²- X³+ x²+'S (1+x+) u(t) st 0 (2) u(x) = x's (6x-2+) u(t) St U (x) = x + 2 {xt 41t) dt u(x)=x+2arrow_forward
- Consider the Boundary-Initial Value problem J²u и ди 4 0 0 მე2 It u(0,t) = 0, 0, u(6,t) = 0, t>0 u(x, 0) = x(6x), 0 < x <6 This models a heated wire, with zero endpoints temperatures. The solution u(x,t) of the initial-boundary value problem is given by the series u(x,t)-b, sin П3 n=1 (b, sin ((2n − 1) — x) e-cnt where bn ☐ and Сп ☐arrow_forward• -7 10 1.0 (2 - x) for 0 < x < 2, Let f(x) = for 2< x < 6. Compute the Fourier cosine coefficients for f(x). Ao An Give values for the Fourier cosine series C(x) = = Ao • C(6) = = C(-1) = = C(11) = + n=1 IM 8 An cos пп (π x ). 6arrow_forwardThe Fourier series of the function is given by where со Сп and bn || f(x) = {- 9x if π < x < 0 -4x if 0 < x < π f(x) ~ CO n=0 (Cn cos ((2n+1) x) - Σ bn sin (nx) n=1arrow_forward
- Consider the Boundary-Initial Value problem a²u J²u 9 მე2 Ət²' , 0 0 u(0,t) = 0, u(5,t) = 0, ди u(x, 0) = x(5 − x), at t>0 (x, 0) = 0, 0 < x < 5 This models the displacement u(x,t) of a freely vibrating string, with fixed ends, initial profile x (5 - x), and zero initial velocity. The solution u(x, t), is given by the series ∞ 4 u(x, t) = n=1 bɲ sin (· П (n = 7 x ) cos(cnt) where ཆུ་ང་ and Сп =arrow_forwardThe Fourier sine series of the function is given by 3x f(x) = = if 0x5/3 5 if 5/3 x < 5 where bn b₁ = ☐ ∞ ƒ(2) ~ Σb, sin (n = 2) n=1 (품)arrow_forwardFind the values of a and b for which each function will be differentiable for all values of x on its domain. Note: Please write the answer in the form of ordered pairs (a, b). a² f(x) = x -2b, x ≤-1 b²x,x > −1 2ax²+62arrow_forward
- k. 1. |_ 1/2 S 0 cos(x-2) x3 √1+ e¯x ex dx dxarrow_forwardAttempt 6: 1 out of 2 parts have been answered correctly. Calculate the Taylor polynomials T2(x) and T3(x) centered at x = 7 for f(x) = ln(x + 1). T₂(x) T-(2) - in (8) - (½) (x-7) - (128)(x-7)2 8 Tз(x) = 2(x)+ In(8) + ½ ½ (x-7) - 128 (x-7)² + 1536 (x-7)3 8 Try again Next item Answers Attempt 6 of 6 Ei T The Weather Channel DELL UP % 8 9 205 54 # m E R D F G Harrow_forwardQuestion 3 1 pts By changing to spherical coordinates, calculate A = SSS, e(x²+y²+z²)³/2/2 dV, = 2x and y = where D is the region in the first octant between the planes y = above the cone z = /3(x² + y²), and between the spheres x² + y² + z² and x² + y² + z² = 4. Then sin(4A) is 3x, = 1 0.442 -0.438 -0.913 0.143 -0.502 -0.574 0.596 -0.444arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning