Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 19QP
Use the Born-Haber cycle outlined in Section 8.2 for NaCl to calculate the lattice energy of LiCl. Use data from Figures 7.8 and 7.10 and Appendix 2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use data from Appendix C, Figure 7.10, and Figure 7.12 to calculatethe lattice energy of RbCl
2. Using the Born-Lande equation, calculate the
lattice energy of calcium fluoride.
Determine the energy change for the reaction Li (s) + ½ Cl2 (g) → LiCl (s) from the following data: Lattice energy of LiCl = −861 kJ/mol Energy to vaporize Li = 159 kJ/mol Ionization energy of Li = 520 kJ/mol Cl2 bond energy: 240 kJ/mol Electron affinity of Cl: −349 kJ/mol
I know the answer is -411 kJ/mol I want to know how to solve it and get to the answer.
Chapter 8 Solutions
Chemistry
Ch. 8.1 - Practice ProblemATTEMPT Write Lewis dot symbols...Ch. 8.1 - Practice Problem BUILD
Indicate the charge on...Ch. 8.1 - Practice ProblemCONCEPTUALIZE For each of the...Ch. 8.1 - 8.1.1 Using only a periodic table, determine the...Ch. 8.1 - 8.1.2 Using only a periodic table, determine the...Ch. 8.1 - To which group does element X belong if its Lewis...Ch. 8.1 - Prob. 4CPCh. 8.2 - Prob. 1PPACh. 8.2 - Practice ProblemBUILD Arrange the compounds NaF,...Ch. 8.2 - Practice ProblemCONCEPTUALIZE Common ions of four...
Ch. 8.2 - 8.2.1 Will the lattice energy of KF be larger or...Ch. 8.2 - 8.2.2 Using the following data, calculate the...Ch. 8.2 - 8.2.3 Lattice energies are graphed for three...Ch. 8.3 - Practice ProblemATTEMPT Using data from Figures...Ch. 8.3 - Prob. 1PPBCh. 8.3 - Prob. 1PPCCh. 8.4 - Practice Problem ATTEMPT Classify the following...Ch. 8.4 - Prob. 1PPBCh. 8.4 - Prob. 1PPCCh. 8.4 - In which of the following molecules are the bonds...Ch. 8.4 - Using data from Table 8.5, calculate the magnitude...Ch. 8.4 - Prob. 3CPCh. 8.4 - Prob. 4CPCh. 8.5 - Prob. 1PPACh. 8.5 - Prob. 1PPBCh. 8.5 - Prob. 1PPCCh. 8.5 - Identify the correct Lewis structure for formic...Ch. 8.5 - Identity the correct Lewis structure for hydrogen...Ch. 8.6 - Prob. 1PPACh. 8.6 - Prob. 1PPBCh. 8.6 - Prob. 1PPCCh. 8.6 - Determine the formal charges on H, C, and N,...Ch. 8.6 - 8.6.2 Which of the Lewis structures shown is most...Ch. 8.7 - Prob. 1PPACh. 8.7 - Practice ProblemBUILD Draw the Lewis structure for...Ch. 8.7 - Practice Problem CONCEPTUALIZE
Of the three Lewis...Ch. 8.7 - Indicate which of the following are resonance...Ch. 8.7 - 8.7.2 How many resonance structures can be drawn...Ch. 8.8 - Prob. 1PPACh. 8.8 - Prob. 1PPBCh. 8.8 - Practice Problem CONCEPTUALIZE
The hypothetical...Ch. 8.8 - In which of the following species does the central...Ch. 8.8 - Prob. 2CPCh. 8.8 - In which species does the central atom obey the...Ch. 8.8 - 8.8.4 How many lone pairs are there on the central...Ch. 8.9 - Prob. 1PPACh. 8.9 - Practice ProblemBUILD Use Lewis structures and...Ch. 8.9 - Prob. 1PPCCh. 8.9 - 8.9.1 Use data from Table 8.6 to estimate for the...Ch. 8.9 - Use data from Table 8.6 to estimate Δ H rxn for...Ch. 8.9 - Use bond enthalpies to determine Δ H rxn for the...Ch. 8.9 - Prob. 4CPCh. 8.10 - Practice ProblemATTEMPT Draw all possible...Ch. 8.10 - Prob. 1PPBCh. 8.10 - Practice ProblemCONCEPTUALIZE The Lewis structure...Ch. 8.11 - Prob. 1PPACh. 8.11 - Prob. 1PPBCh. 8.11 - Prob. 1PPCCh. 8.12 - Prob. 1PPACh. 8.12 - Prob. 1PPBCh. 8.12 - Prob. 1PPCCh. 8.13 - Prob. 1PPACh. 8.13 - Practice Problem BUILD
Using the following...Ch. 8.13 - Prob. 1PPCCh. 8 - 8.1
Which of the following atoms must always obey...Ch. 8 - Prob. 2KSPCh. 8 - Prob. 3KSPCh. 8 - Prob. 4KSPCh. 8 - What is a Lewis dot symbol? What elements do we...Ch. 8 - Use the second member of each group from Group 1A...Ch. 8 - Prob. 3QPCh. 8 - 8.4 Write Lewis dot symbols for the following...Ch. 8 - Write Lewis dot symbols for the following atoms...Ch. 8 - Prob. 6QPCh. 8 - Prob. 7QPCh. 8 - Name five metals and five nonmetals that are very...Ch. 8 - Prob. 9QPCh. 8 - Prob. 10QPCh. 8 - Prob. 11QPCh. 8 - The term molar mass was introduced in Chapter 3....Ch. 8 - Prob. 13QPCh. 8 - Prob. 14QPCh. 8 - Prob. 15QPCh. 8 - Explain how the lattice energy of an ionic...Ch. 8 - Prob. 17QPCh. 8 - Prob. 18QPCh. 8 - 8.19 Use the Born-Haber cycle outlined in Section...Ch. 8 - Calculate the lattice energy of CaCl 2 . Use data...Ch. 8 - An ionic bond is formed between a cation A + and...Ch. 8 - Prob. 22QPCh. 8 - Use Lewis dot symbols to show the transfer of...Ch. 8 - Write the Lewis dot symbols of the reactants and...Ch. 8 - 8.25 Describe Lewis’s contribution to our...Ch. 8 - Prob. 26QPCh. 8 - Prob. 27QPCh. 8 - Prob. 28QPCh. 8 - Prob. 29QPCh. 8 - Prob. 30QPCh. 8 - Prob. 31QPCh. 8 - Prob. 32QPCh. 8 - Prob. 33QPCh. 8 - Define electronegativity, and explain the...Ch. 8 - Prob. 35QPCh. 8 - Prob. 36QPCh. 8 - Prob. 37QPCh. 8 - Using information in Table 8.5. calculate the...Ch. 8 - List the following bonds in order of increasing...Ch. 8 - Classify the following bonds as covalent, polar...Ch. 8 - 8.41 Classify the following bonds as covalent,...Ch. 8 - 8.42 List the following bonds in order of...Ch. 8 - Prob. 43QPCh. 8 - Prob. 44QPCh. 8 - Prob. 45QPCh. 8 - Prob. 46QPCh. 8 - Draw Lewis structures for the following molecules...Ch. 8 - Draw Lewis structures for the following molecules:...Ch. 8 - Prob. 49QPCh. 8 - Prob. 50QPCh. 8 - 8.51 Draw Lewis structures for the following ions:...Ch. 8 - Draw Lewis structures for the following ions: (a)...Ch. 8 - Prob. 53QPCh. 8 - Prob. 54QPCh. 8 - Prob. 55QPCh. 8 - Prob. 56QPCh. 8 - Prob. 57QPCh. 8 - 8.58 Draw three resonance structures for the...Ch. 8 - Prob. 59QPCh. 8 - Prob. 60QPCh. 8 - Draw three reasonable resonance structures for the...Ch. 8 - Draw three resonance structures for the molecule N...Ch. 8 - Prob. 63QPCh. 8 - Prob. 64QPCh. 8 - Prob. 65QPCh. 8 - Prob. 66QPCh. 8 - Prob. 67QPCh. 8 - Prob. 68QPCh. 8 - Prob. 69QPCh. 8 - The AlI 3 molecule has an incomplete octet around...Ch. 8 - Prob. 71QPCh. 8 - Prob. 72QPCh. 8 - 8.73 Write a Lewis structure for Does this...Ch. 8 - Prob. 74QPCh. 8 - Prob. 75QPCh. 8 - 8.76 Draw two resonance structures for the bromate...Ch. 8 - Prob. 77QPCh. 8 - What is bond enthalpy? Bond enthalpies of...Ch. 8 - Prob. 79QPCh. 8 - Prob. 80QPCh. 8 - Prob. 81QPCh. 8 - Prob. 82QPCh. 8 - For the reaction 2 C 2 H 6 ( g ) + 7 O 2 ( g ) → 4...Ch. 8 - Prob. 84QPCh. 8 - 8.85. Use average bond enthalpies from Table 8.6...Ch. 8 - Prob. 86APCh. 8 - Prob. 87APCh. 8 - Prob. 88APCh. 8 - Prob. 89APCh. 8 - Prob. 90APCh. 8 - 8.91 Describe some characteristics of an ionic...Ch. 8 - Prob. 92APCh. 8 - Prob. 93APCh. 8 - Prob. 94APCh. 8 - Prob. 95APCh. 8 - Prob. 96APCh. 8 - Prob. 97APCh. 8 - Prob. 98APCh. 8 - Prob. 99APCh. 8 - Prob. 100APCh. 8 - Prob. 101APCh. 8 - Prob. 102APCh. 8 - Prob. 103APCh. 8 - Prob. 104APCh. 8 - Which of the following species are isoelectronic:...Ch. 8 - Prob. 106APCh. 8 - 8.107 Draw two resonance structures for each...Ch. 8 - The following species have been detected in...Ch. 8 - The amide ion ( NH 2 − ) is a Brø�nsted base. Use...Ch. 8 - Prob. 110QPCh. 8 - The triiodide ion ( I 3 − ) in which the I atoms...Ch. 8 - Prob. 112APCh. 8 - In 1999, an unusual cation containing only...Ch. 8 - Prob. 114APCh. 8 - Prob. 115APCh. 8 - Prob. 116APCh. 8 - In the gas phase, aluminum chloride exists as a...Ch. 8 - Prob. 118APCh. 8 - Calculate Δ H º for the reaction H 2 ( g ) + I 2 (...Ch. 8 - Draw Lewis structures for the following organic...Ch. 8 - Prob. 121APCh. 8 - Prob. 122APCh. 8 - Prob. 123APCh. 8 - Write three resonance structures for (a) the...Ch. 8 - Prob. 125APCh. 8 - Prob. 126APCh. 8 - Prob. 127APCh. 8 - Prob. 128APCh. 8 - Prob. 129APCh. 8 - Prob. 130APCh. 8 - Prob. 131APCh. 8 - Among the common inhaled anesthetics are:...Ch. 8 - Prob. 133QPCh. 8 - Prob. 134QPCh. 8 - Prob. 135QPCh. 8 - 8.136 Using this and data from Appendix 2,...Ch. 8 - Prob. 137QPCh. 8 - Prob. 138APCh. 8 - Prob. 139APCh. 8 - Prob. 140APCh. 8 - Prob. 141APCh. 8 - Prob. 142APCh. 8 - Prob. 143APCh. 8 - Although nitrogen dioxide ( NO 2 ) is a stable...Ch. 8 - 8.145 The chlorine nitrate molecule is believed...Ch. 8 - The hydroxyl radical ( OH ) plays an important...Ch. 8 - Prob. 147APCh. 8 - Prob. 148APCh. 8 - Prob. 1SEPPCh. 8 - 2. Use formal charges to choose the best of the...Ch. 8 - Prob. 3SEPPCh. 8 - Prob. 4SEPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- hat is the enthalpy change for a process? Is enthalpy a state function? In what experimental apparatus are enthalpy changes measured?arrow_forwardCalculate the lattice energy of potassium fluoride, KF, using the BornHaber cycle. Use thermodynamic data from Appendix C to obtain the enthalpy changes for each step. (Note: You will obtain a slightly different answer if you use values given in Chapter 8 for the ionization energy and electron affinity, which are energy values at 0 K rather than the enthalpy changes at 298 K.)arrow_forward7.74 In a lattice, a positive ion is often surrounded by eight negative ions. We might reason, therefore, that the lattice energy should be related to eight times the potential of interaction between these oppositely charged particles. Why is this reasoning too simpler?arrow_forward
- How can I use the Born Haber cycle to establish the lattice energy of CsCl (s)from the following data: ΔHf° [CsCl(s)] = -442.8 kJ/mol; enthalpy of sublimation of Cesium is 78.2 kJ/mol; enthalpy of dissociation of Cl2 (g) = 243 kJ/mol Cl2 ; IE1 for Cs(g) = 375.7 kJ/mol; electron affinity enthalpy-EA1 for Cl(g) = -349kJ/mol.arrow_forwardCalculate the lattice energy of NaCl(s) using the following thermodynamic data (all data is in kJ/mol). Note that the data given has been perturbed, so looking up the answer is probably not a good idea. Na(s) ΔHsublimation = 88 kJ/mol Na(g) Ionization energy = 476 kJ/mol Cl-Cl(g) Bond energy = 223 kJ/mol Cl(g) Electron affinity = -369 kJ/mol NaCl(s) ΔH°f = -431 kJ/mol ____________ kJ/molarrow_forwardUse data from Appendix C, Figure 7.9, and Figure 7.11 to calculate the lattice energy of RbCl. Is this value greater than or less than the lattice energy of NaCl? Explain. Figure 7.9 Figure 7.9arrow_forward
- 16) ( , Using the thermochemical data below calculate the lattice energy for the formation of Na₂O. Na(s) → Na(g) 107.3 kJ/mol Na(g) → Na*(g) + 1 e 495.9 kJ/mol 2 Na(s) + O₂(g) → Na₂O(s) -418 kJ/mol 1/2 O₂(g) → O(g) 249.1 kJ/mol O(g) + 1 e→O(g) -141 kJ/mol -1484.5 kJ/mol O(g) + 1 e0²(g) s) If 115 or pressuarrow_forwardUse the data given below to construct a Born-Haber cycle to determine the lattice energy of CaO. A H°(kJ) Ca(s) → Ca(g) 193 Ca(g) → Cat (g) + e 590 Cat (g) → Ca2+(g) + e 1010 20(g) → O2(g) -498 O(g) + e O(g) -141 O(g) + e → O2(g) 878 Ca(s) + O2(g) → CaO(s) -> -635 O-2667 kJ O-3414 kJ O +1397 kJ +3028 kJ O-2144 kJarrow_forward2. Use the data provided below to calculate the lattice energy of calcium chloride. Electron affinity of Cl = -348.7 kJ/mol 1st ionization energy of Ca = 590.0 kJ/mol 2nd ionization energy of Ca = 1145.0 kJ/mol Bond energy of Cl2 = 242.6 kJ/mol Sublimation energy of Ca = 178.0 kJ/mol AH¡ [CaCl. (s)] =-795.0 kJ/molarrow_forward
- Construct a Born-Haber cycle for the formation of the hypothetical compound NaCl2, where the sodium ion has a 2+ charge (the 2nd ionization energy for sodium is given in Table 7.2 in the textbook). Part A How large would the lattice energy need to be for the formation of NaCl2 to be exothermic? Part B If we were to estimate the lattice energy of NaCl2 to be roughly equal to that of MgCl2 (2326 kJ/mol from Table 8.2 in the textbook), what value would you obtain for the standard enthalpy of formation, ΔH∘f, of NaCl2?arrow_forwardWrite the steps (reactions) for the Born-Haber cycle for MgCl2(s). Use the Born-Haber cycle to calculate the lattice energy of MgCl2(s). Some useful data to work with: For Mg: ΔΔHsub = 147 kJ/mol, IE1 and IE2 are 738 kJ/mol and 1450 kJ/mol, respectively. For chlorine: Bond energy = 243 kJ/mol, EA1 = -349 kJ/mol, respectively. The enthalpy of formation of magnesium chloride is -748.8 kJ/mol.arrow_forward1. Below is a list of enthalpy changes for the Born-Haber cycle for the formation of solid LiF from Li(s) and F(g). Use these data to determine the lattice energy for the formation LiF(s). Li(s) → Li(g) ΔH1 = +162 kJ/mol Li(g) → Li+(g) + e- ΔH2 = +520.2 kJ/molF2(g) → 2F(g) ΔH3 = 154 kJ/mol F(g) + e- → F-(g) ΔH4 = -328 kJ/molLi(s) + 1/2F2(g) → LiF(s) ΔHf = -612 kJ/mol Select an answer and submit. For keyboard navigation, use the up/down arrow keys to select an answer. a. 1371 kJ/mol b. -1371 kJ/mol c. 1043 kJ/mol d. -1043 kJ/molarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY