An Introduction to Thermal Physics
An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
bartleby

Concept explainers

Question
Book Icon
Chapter 7.4, Problem 53P

(a)

To determine

The wavelength of Hawking radiation emitted by one-solar-mass black hole.

(b)

To determine

The total power radiated by a solar mass black hole.

(c)

To determine

The differential equation for the mass of the black hole and its solution.

(d)

To determine

The life time of one-solar-mass of black hole.

(e)

To determine

The initial mass of the black hole and the wavelength of the electromagnetic spectrum.

Blurred answer
Students have asked these similar questions
The intensity of blackbody radiation peaks at a wavelength of 613 nm. (a) What is the temperature (in K) of the radiation source? (Give your answer to at least 3 significant figures.) K (b) Determine the power radiated per unit area (in W/m?) of the radiation source at this temperature. W/m2
Problem-1: An asteroid is hurtling toward earth at 150,000“. The temperature of the asteroid is about 100 K, meaning that its peak emission is 2 = 29 µm. The speed of light is c = 3E[8]. a) What is the wavelength of light that we receive from the asteroid? (Answer: 2.89855E[-05] m)
A blackbody (a hollow sphere whose inside is black) emits radiation when it is heated. The emittance (Mλ, W/m3), which is the power per unit area per wavelength, at a given temperature (T, K) and wavelength (λ, m) is given by the Planck distribution, where h is Planck's constant, c is the speed of light, and k is Boltzmann's constant. Determine the temperature in degrees Celsius at which a blackbody will emit light of wavelength 3.57 μm with an Mλ of 5.31×1010 W/m3. The power per unit area emitted can be determined by integrating Mλ between two wavelengths, λ1 and λ2. However, for narrow wavelength ranges (Δλ), the power emitted can be simply calculated as the product of Mλ and Δλ. power emitted=MλΔλ Using the conditions from the first part of the question, determine the power emitted per square meter (W/m2) between the wavelengths 3.56 μm and 3.58 μm.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning