Question
An infrared satellite measures outgoing radiation that leaves Earth's surface through an atmospheric window. The observed spectral irradiance at a wavelength of 10 μm is 2.199×107 W m-2 m-1. What is the temperature of the surface? Give your answer in K.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- Assume the intensity of solar radiation incident on the cloud tops of the Earth is 1 677 W/m². (a) Taking the average Earth-Sun separation to be 1.496 x 10¹1 m, calculate the total power radiated by the Sun. 4.905E26 x Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. W (b) Determine the maximum value of the electric field in the sunlight at the Earth's location. kv/m (c) Determine the maximum value of the magnetic field in the sunlight at the Earth's location. μTarrow_forwardSuppose a star with radius 8.57 × 108 m has a peak wavelength of 680 nm in the spectrum of its emitted radiation. (a) Find the energy of a photon with this wavelength. J/photon (b) What is the surface temperature of the star? K (c) At what rate is energy emitted from the star in the form of radiation? Assume the star is a blackbody (e = 1). W (d) Using the answer to part (a), estimate the rate at which photons leave the surface of the star. photons/sarrow_forwardThe figure below depicts spectral reflectance measurements for three different materials: a green leaf from a healthy plant, a sheet of shiny blue paper, and the palm of a human hand. The measurements are labeled 1 (black line), 2 (red line), and 3 (blue line). Match the measurements to the most appropriate material typearrow_forward
- The peak wavelength of radiation emitted by a black body at a temperature of 2000 K is 1.45 μm. If the peak wavelength of emitted radiation changes to 2.90 μm, then the temperature (in K) of the black body isarrow_forwardFor a body emitting blackbody radiation, the total power emitted is proportional to the 4th power of the body’s absolute temperature:(T in kelvins)and the wavelength of the emitted EM radiation that has the highest intensity is inversely proportional to the body’s absolute temperature according to:( in meters, T in kelvins)Assume an object is emitting blackbody radiation. A body in a room at 300 K is heated to 3,000 K. The wavelength of the most intense EM radiation emitted by the body at 3,000 K is the wavelength of the most intense EM radiation at 300 K.arrow_forward2. Suppose the downward irradiance at the top of a layer of an absorbing gas is 600 Wm2, the upward reflected radiation is 150 Wm-2, and the radiation emerging at the bottom of the layer is 200 Wm-² (a) What is the reflectance of the layer? (b) What is the transmittance of the layer? (c) How much radiation is absorbed in the layer (Wm-²)? (d) What is the absorptance of the layer?arrow_forward
arrow_back_ios
arrow_forward_ios