An Introduction to Thermal Physics
An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
Question
Book Icon
Chapter 7.3, Problem 29P
To determine

The value energy integral for the given condition.

Blurred answer
Students have asked these similar questions
Consider N identical harmonic oscillators (as in the Einstein floor). Permissible Energies of each oscillator (E = n h f (n = 0, 1, 2 ...)) 0, hf, 2hf and so on. A) Calculating the selection function of a single harmonic oscillator. What is the division of N oscillators? B) Obtain the average energy of N oscillators at temperature T from the partition function. C) Calculate this capacity and T-> 0 and At T-> infinity limits, what will the heat capacity be? Are these results consistent with the experiment? Why? What is the correct theory about this? D) Find the Helmholtz free energy from this system. E) Derive the expression that gives the entropy of this system for the temperature.
Problem 1: This problem concerns a collection of N identical harmonic oscillators (perhaps an Einstein solid) at temperature T. The allowed energies of each oscillator are 0, hf, 2hf, and so on. a) Prove =1+x + x² + x³ + .... Ignore Schroeder's comment about proving 1-x the formula by long division. Prove it by first multiplying both sides of the equation by (1 – x), and then thinking about the right-hand side of the resulting expression. b) Evaluate the partition function for a single harmonic oscillator. Use the result of (a) to simplify your answer as much as possible. c) Use E = - дz to find an expression for the average energy of a single oscillator. z aB Simplify as much as possible. d) What is the total energy of the system of N oscillators at temperature T?
For an ideal gas of classical non- interacting atoms in thermal equilibrium, the Cartesian component of the velocity are statistically independent. In three dimensions, the probability density distribution of the velocity is: where σ² = kBT m P(Vx, Vy, Vz) = (2nо²)-³/² exp 20² 1. Show that the probability density of the velocity is normalized. 2. Find an expression of the arithmetic average of the speed. 3. Find and expression of the root-mean-square value of the speed. 4. Estimate the standard deviation of the speed.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON