An Introduction to Thermal Physics
An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
Question
Book Icon
Chapter 7.4, Problem 44P

(a)

To determine

To show: The number of photons in a equilibrium in a box is 8πV( kT hc)30x2ex1dn .

(b)

To determine

The entropy per photon.

(c)

To determine

The number of photons per cubic meter at three different temperatures.

Blurred answer
Students have asked these similar questions
A molecule has states with the following energies: 0, 1ε, 2ε, 3ε, and 4ε, where ε = 1.0 x 10-20 J. Calculate the probability that a molecule is in the ground state (with zero energy) for a collection of molecules in thermal equilibrium at T = 300 K. Provide your answer as a number in normal form to 3 decimal places (in the form X.XXX). It is a good idea to keep 4 decimal places during your calculation, then round to 3 decimal places for your submitted answer. Hint: note that this molecule has a finite number of states so you must take a finite sum, do not use expressions for infinite sums. Also note that your calculations for this problem will be useful for the next two problems, so keep them.
Problem 1: In statistical mechanics, the internal energy of an ideal gas is given by: N. aNkB 2/3 (3NKB U = U(S,V) = е where a is a constant. 1- Show that the variation of the internal energy is given by: 2 dS - \3V 2 dU = dV \3NkB 2- Using the fundamental relation of thermodynamic dU = T.ds – p. dV, show that the equation of state PV = nRT follows from the first expression of U.
Using the same procedure to determine the fundamental equation of chemical thermodynamics (dG = –SdT + VdP) from the Gibbs free energy of a system (G = H – TS), can you please explain how to find the analogous fundamental equation for (A=U-TS)?  Also, can you please handwrite the formula down instead of typing? I get confused with typed formulas sometime.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning