(a)
Interpretation:
The equilibrium constant at
Concept Introduction:
The equilibrium constant of a reaction can be calculated using the given expression,
(a)
Answer to Problem 5G.22E
The equilibrium constant of the given reaction is
Explanation of Solution
Given reaction is
The synthesis of trichloromethane (chloroform) from natural gas (methane):
Temperature of the reaction is
The
The
The
The
Here,
Now, the equilibrium constant of the reaction is calculated as
To calculate
Therefore, the
(b)
Interpretation:
The equilibrium constant at
Concept introduction:
Refer to part (a).
(b)
Answer to Problem 5G.22E
The equilibrium constant of the given reaction is.
Explanation of Solution
Given reaction is
The hydrogenation of acetylene to ethane:
Temperature of the reaction is
The
The
The
Here,
Now, the equilibrium constant of the reaction is calculated as
To calculate
Therefore, the
(c)
Interpretation:
The equilibrium constant at
Concept introduction:
Refer to part (a).
(c)
Answer to Problem 5G.22E
The equilibrium constant of the given reaction is
Explanation of Solution
Given reaction is
The final step in the industrial production of nitric acid:
Temperature of the reaction is
The
The
The
The
Here,
Now, the equilibrium constant of the reaction is calculated as
To calculate
Therefore, the
(d)
Interpretation:
The equilibrium constant at
Concept introduction:
Refer to part (a).
(d)
Answer to Problem 5G.22E
The equilibrium constant of the given reaction is
Explanation of Solution
Given reaction is
The reaction of hydrazine and oxygen in a rocket:
The
The
The
The
Temperature of the reaction is
Here,
Now, the equilibrium constant of the reaction is calculated as
To calculate
Therefore, the
Want to see more full solutions like this?
Chapter 5 Solutions
Chemical Principles: The Quest for Insight
- Actually, the carbon in CO2(g) is thermodynamically unstable with respect to the carbon in calcium carbonate(limestone). Verify this by determining the standardGibbs free energy change for the reaction of lime,CaO(s), with CO2(g) to make CaCO3(s).arrow_forwardDescribe a nonchemical system that is not in equilibrium, and explain why equilibrium has not been achieved.arrow_forwardAnother step in the metabolism of glucose, which occurs after the formation of glucose6-phosphate, is the conversion of fructose6-phosphate to fructose1,6-bisphosphate(bis meanstwo): Fructose6-phosphate(aq) + H2PO4(aq) fructose l,6-bisphosphate(aq) + H2O() + H+(aq) (a) This reaction has a Gibbs free energy change of +16.7 kJ/mol of fructose6-phosphate. Is it endergonic or exergonic? (b) Write the equation for the formation of 1 mol ADP fromATR for which rG = 30.5 kJ/mol. (c) Couple these two reactions to get an exergonic process;write its overall chemical equation, and calculate theGibbs free energy change.arrow_forward
- Calculate the standard Gibbs free-energy change when SO3 forms from SO2 and O2 at 298 K. Why is sulfur trioxide an important substance to study? (Hint: What happens when it combines with water?)arrow_forwardConsider a metal ion A2+ and its nitrate salt, In an experiment, 35.00 mL of a 0.217 M solution of A(NO3)2 is made to react with 25.00 mL of 0.195 M NaOH. A precipitate, A(OH)2, forms. Along with the precipitation, the temperature increases from 24.8C to 28.2C. What is H for the precipitation of A(OH)2? The following assumptions can be made. • The density of the solution is 1.00 g/mL. • Volumes are additive. • The specific heat of the solution is 4.18 J/g C.arrow_forwardAdenosine triphosphate, ATP, is used as a free-energy source by biological cells. (See the essay on page 624.) ATP hydrolyzes in the presence of enzymes to give ADP: ATP(aq)+H2O(l)ADP(aq)+H2PO4(aq);G=30.5kJ/molat25C Consider a hypothetical biochemical reaction of molecule A to give molecule B: A(aq)B(aq);G=+15.0kJ/molat25C Calculate the ratio [B]/[A] at 25C at equilibrium. Now consider this reaction coupled to the reaction for the hydrolysis of ATP: A(aq)+ATP(aq)+H2O(l)B(aq)+ADP(aq)+H2PO4(aq) If a cell maintains a high ratio of ATP to ADP and H2PO4 by continuously making ATP, the conversion of A to B can be made highly spontaneous. A characteristic value of this ratio is [ATP][ADP][H2PO4]=500 Calculate the ratio [B][A] in this case and compare it with the uncoupled reaction. Compared with the uncoupled reaction, how much larger is this ratio when coupled to the hydrolysis of ATP?arrow_forward
- The equilibrium constant for a certain reaction increases by a factor of 6.67 when the temperature is increased from 300.0 K to 350.0 K. Calculate the standard change in enthalpy (H) for this reaction (assuming H is temperature-independent).arrow_forwardConsider the reaction NH4+(aq) H+(aq)+NH3(aq) Use G f for NH3(aq) at 25C=26.7 kJ/mol and the appropriate tables to calculate (a) G at 25C (b) Ka at 25Carrow_forwardWhen a mixture of hydrogen and bromine is maintained at normal atmospheric pressure and heated above 200. °C in a closed container, the hydrogen and bromine react to form hydrogen bromide and a gas-phase equilibrium is established. Write a balanced chemical equation for the equilibrium reaction. Use bond enthalpies from Table 6.2 ( Sec. 6-6b) to estimate the enthalpy change for the reaction. Based on your answers to parts (a) and (b), which is more important in determining the position of this equilibrium, the entropy effect or the energy effect? In which direction will the equilibrium shift as the temperature increases above 200. °C? Explain. Suppose that the pressure were increased to triple its initial value. In which direction would the equilibrium shift? Why is the equilibrium not established at room temperature?arrow_forward
- Consider the reaction: AC (g) + 2 B (g) ↔ AB2 (g) + C (g) What is the equilibrium expression for this reaction?arrow_forwardFor a certain chemical reaction, the standard Gibbs free energy of reaction at 25.0 °C is −79.3 kJ. Calculate the equilibrium constant K for this reaction. Round your answer to 2 significant digits. K = 0 x10 × Śarrow_forwardThe equilibrium constant for a reaction carried out at 25 degrees celsius is 100. (a) if the reaction favorable or unfavorable? (b) what is the delta G prime (gibbs free energy ^prime) for the reaction?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning