Chemical Principles: The Quest for Insight
7th Edition
ISBN: 9781464183959
Author: Peter Atkins, Loretta Jones, Leroy Laverman
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5D.5E
(a)
Interpretation Introduction
Interpretation:
The molar solubility in water of
(b)
Interpretation Introduction
Interpretation:
The molar solubility in water of
(c)
Interpretation Introduction
Interpretation:
The molar solubility in water of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Write the equilibrium constant for the reaction CH4(g) + 3 Cl2(g) ⇋ CHCl3(l) + 3 HCl(g), with the gases treated as perfect.
6B.4(b) The equilibrium constant for the reaction N2(g) + O2(g)=2 NO(g)
is 1.69×10-3 at 2300 K. A mixture consisting of 5.0 g of nitrogen and 2.0 g of
oxygen in a container of volume 1.0 dm³ is heated to 2300 K and allowed to
come to equilibrium. Calculate the mole fraction of NO at equilibrium.20
6.
When the ideal-gas reaction A+B=C+Dhas reached
equilibrium, state whether or not each of the following relations must be true. Here n¡ is
the number of moles of species i in equilibrium, P, is the partial pressure of i, and µ; is
the chemical potential of i. Here a simple True or False answer is sufficient.
(a) nc+np=nA +ng
(b) Pc+Pp=PA+PB
(c) na=ng
(d) nc=na
(e) If only A and B are present initially, then nc=np
(f) Ha + HB= Hc+ Hp no matter what the initial composition.
(g) If only A and B are present initially, then in equilibrium we must have nc # 0.
(h) The equilibrium constant Kp(T)= PĄPB/(PcPp).
(i) The value of –RT In Kp(T) = µE(T)+µ8(T)– H3(T) –- H§(T).
) The equilibrium constant is independent of the total pressure.
Chapter 5 Solutions
Chemical Principles: The Quest for Insight
Ch. 5 - Prob. 5A.1ASTCh. 5 - Prob. 5A.1BSTCh. 5 - Prob. 5A.2ASTCh. 5 - Prob. 5A.2BSTCh. 5 - Prob. 5A.3ASTCh. 5 - Prob. 5A.3BSTCh. 5 - Prob. 5A.1ECh. 5 - Prob. 5A.2ECh. 5 - Prob. 5A.3ECh. 5 - Prob. 5A.4E
Ch. 5 - Prob. 5A.5ECh. 5 - Prob. 5A.6ECh. 5 - Prob. 5A.7ECh. 5 - Prob. 5A.8ECh. 5 - Prob. 5A.11ECh. 5 - Prob. 5B.1ASTCh. 5 - Prob. 5B.1BSTCh. 5 - Prob. 5B.2ASTCh. 5 - Prob. 5B.2BSTCh. 5 - Prob. 5B.3ASTCh. 5 - Prob. 5B.3BSTCh. 5 - Prob. 5B.1ECh. 5 - Prob. 5B.2ECh. 5 - Prob. 5B.3ECh. 5 - Prob. 5B.5ECh. 5 - Prob. 5B.7ECh. 5 - Prob. 5C.1ASTCh. 5 - Prob. 5C.1BSTCh. 5 - Prob. 5C.2ASTCh. 5 - Prob. 5C.2BSTCh. 5 - Prob. 5C.3ASTCh. 5 - Prob. 5C.3BSTCh. 5 - Prob. 5C.1ECh. 5 - Prob. 5C.3ECh. 5 - Prob. 5C.4ECh. 5 - Prob. 5C.5ECh. 5 - Prob. 5C.6ECh. 5 - Prob. 5C.7ECh. 5 - Prob. 5C.8ECh. 5 - Prob. 5C.9ECh. 5 - Prob. 5C.10ECh. 5 - Prob. 5C.11ECh. 5 - Prob. 5C.12ECh. 5 - Prob. 5C.15ECh. 5 - Prob. 5C.16ECh. 5 - Prob. 5D.1ASTCh. 5 - Prob. 5D.1BSTCh. 5 - Prob. 5D.1ECh. 5 - Prob. 5D.2ECh. 5 - Prob. 5D.3ECh. 5 - Prob. 5D.4ECh. 5 - Prob. 5D.5ECh. 5 - Prob. 5D.6ECh. 5 - Prob. 5D.7ECh. 5 - Prob. 5D.8ECh. 5 - Prob. 5D.9ECh. 5 - Prob. 5D.10ECh. 5 - Prob. 5D.11ECh. 5 - Prob. 5D.12ECh. 5 - Prob. 5D.13ECh. 5 - Prob. 5D.14ECh. 5 - Prob. 5D.15ECh. 5 - Prob. 5D.16ECh. 5 - Prob. 5D.18ECh. 5 - Prob. 5D.19ECh. 5 - Prob. 5D.20ECh. 5 - Prob. 5E.1ASTCh. 5 - Prob. 5E.1BSTCh. 5 - Prob. 5E.2ASTCh. 5 - Prob. 5E.2BSTCh. 5 - Prob. 5E.1ECh. 5 - Prob. 5E.2ECh. 5 - Prob. 5E.11ECh. 5 - Prob. 5E.12ECh. 5 - Prob. 5F.1ASTCh. 5 - Prob. 5F.1BSTCh. 5 - Prob. 5F.2ASTCh. 5 - Prob. 5F.2BSTCh. 5 - Prob. 5F.3ASTCh. 5 - Prob. 5F.3BSTCh. 5 - Prob. 5F.4ASTCh. 5 - Prob. 5F.4BSTCh. 5 - Prob. 5F.5ASTCh. 5 - Prob. 5F.5BSTCh. 5 - Prob. 5F.1ECh. 5 - Prob. 5F.2ECh. 5 - Prob. 5F.3ECh. 5 - Prob. 5F.5ECh. 5 - Prob. 5F.7ECh. 5 - Prob. 5F.9ECh. 5 - Prob. 5F.10ECh. 5 - Prob. 5F.11ECh. 5 - Prob. 5F.12ECh. 5 - Prob. 5F.13ECh. 5 - Prob. 5F.14ECh. 5 - Prob. 5F.15ECh. 5 - Prob. 5F.16ECh. 5 - Prob. 5G.1ASTCh. 5 - Prob. 5G.1BSTCh. 5 - Prob. 5G.2ASTCh. 5 - Prob. 5G.2BSTCh. 5 - Prob. 5G.3ASTCh. 5 - Prob. 5G.3BSTCh. 5 - Prob. 5G.4ASTCh. 5 - Prob. 5G.4BSTCh. 5 - Prob. 5G.5ASTCh. 5 - Prob. 5G.5BSTCh. 5 - Prob. 5G.1ECh. 5 - Prob. 5G.2ECh. 5 - Prob. 5G.3ECh. 5 - Prob. 5G.4ECh. 5 - Prob. 5G.7ECh. 5 - Prob. 5G.8ECh. 5 - Prob. 5G.9ECh. 5 - Prob. 5G.11ECh. 5 - Prob. 5G.12ECh. 5 - Prob. 5G.13ECh. 5 - Prob. 5G.14ECh. 5 - Prob. 5G.15ECh. 5 - Prob. 5G.16ECh. 5 - Prob. 5G.17ECh. 5 - Prob. 5G.19ECh. 5 - Prob. 5G.20ECh. 5 - Prob. 5G.21ECh. 5 - Prob. 5G.22ECh. 5 - Prob. 5H.1ASTCh. 5 - Prob. 5H.1BSTCh. 5 - Prob. 5H.2ASTCh. 5 - Prob. 5H.2BSTCh. 5 - Prob. 5H.1ECh. 5 - Prob. 5H.2ECh. 5 - Prob. 5H.3ECh. 5 - Prob. 5H.4ECh. 5 - Prob. 5H.5ECh. 5 - Prob. 5H.6ECh. 5 - Prob. 5I.1ASTCh. 5 - Prob. 5I.1BSTCh. 5 - Prob. 5I.2ASTCh. 5 - Prob. 5I.2BSTCh. 5 - Prob. 5I.3ASTCh. 5 - Prob. 5I.3BSTCh. 5 - Prob. 5I.4ASTCh. 5 - Prob. 5I.4BSTCh. 5 - Prob. 5I.1ECh. 5 - Prob. 5I.2ECh. 5 - Prob. 5I.3ECh. 5 - Prob. 5I.4ECh. 5 - Prob. 5I.5ECh. 5 - Prob. 5I.6ECh. 5 - Prob. 5I.7ECh. 5 - Prob. 5I.9ECh. 5 - Prob. 5I.10ECh. 5 - Prob. 5I.11ECh. 5 - Prob. 5I.12ECh. 5 - Prob. 5I.13ECh. 5 - Prob. 5I.14ECh. 5 - Prob. 5I.15ECh. 5 - Prob. 5I.16ECh. 5 - Prob. 5I.17ECh. 5 - Prob. 5I.18ECh. 5 - Prob. 5I.19ECh. 5 - Prob. 5I.20ECh. 5 - Prob. 5I.21ECh. 5 - Prob. 5I.22ECh. 5 - Prob. 5I.23ECh. 5 - Prob. 5I.24ECh. 5 - Prob. 5I.25ECh. 5 - Prob. 5I.26ECh. 5 - Prob. 5I.27ECh. 5 - Prob. 5I.28ECh. 5 - Prob. 5I.29ECh. 5 - Prob. 5I.30ECh. 5 - Prob. 5I.32ECh. 5 - Prob. 5I.33ECh. 5 - Prob. 5I.34ECh. 5 - Prob. 5I.35ECh. 5 - Prob. 5I.36ECh. 5 - Prob. 5J.1ASTCh. 5 - Prob. 5J.1BSTCh. 5 - Prob. 5J.3ASTCh. 5 - Prob. 5J.3BSTCh. 5 - Prob. 5J.4ASTCh. 5 - Prob. 5J.4BSTCh. 5 - Prob. 5J.5ASTCh. 5 - Prob. 5J.5BSTCh. 5 - Prob. 5J.1ECh. 5 - Prob. 5J.2ECh. 5 - Prob. 5J.3ECh. 5 - Prob. 5J.4ECh. 5 - Prob. 5J.5ECh. 5 - Prob. 5J.6ECh. 5 - Prob. 5J.9ECh. 5 - Prob. 5J.10ECh. 5 - Prob. 5J.11ECh. 5 - Prob. 5J.12ECh. 5 - Prob. 5J.13ECh. 5 - Prob. 5J.17ECh. 5 - Prob. 5.1ECh. 5 - Prob. 5.2ECh. 5 - Prob. 5.3ECh. 5 - Prob. 5.4ECh. 5 - Prob. 5.5ECh. 5 - Prob. 5.6ECh. 5 - Prob. 5.7ECh. 5 - Prob. 5.8ECh. 5 - Prob. 5.9ECh. 5 - Prob. 5.10ECh. 5 - Prob. 5.11ECh. 5 - Prob. 5.12ECh. 5 - Prob. 5.13ECh. 5 - Prob. 5.14ECh. 5 - Prob. 5.15ECh. 5 - Prob. 5.16ECh. 5 - Prob. 5.17ECh. 5 - Prob. 5.19ECh. 5 - Prob. 5.23ECh. 5 - Prob. 5.24ECh. 5 - Prob. 5.25ECh. 5 - Prob. 5.26ECh. 5 - Prob. 5.27ECh. 5 - Prob. 5.28ECh. 5 - Prob. 5.29ECh. 5 - Prob. 5.30ECh. 5 - Prob. 5.31ECh. 5 - Prob. 5.32ECh. 5 - Prob. 5.33ECh. 5 - Prob. 5.35ECh. 5 - Prob. 5.37ECh. 5 - Prob. 5.38ECh. 5 - Prob. 5.41ECh. 5 - Prob. 5.43ECh. 5 - Prob. 5.44ECh. 5 - Prob. 5.45ECh. 5 - Prob. 5.46ECh. 5 - Prob. 5.47ECh. 5 - Prob. 5.49ECh. 5 - Prob. 5.51ECh. 5 - Prob. 5.53ECh. 5 - Prob. 5.55ECh. 5 - Prob. 5.57ECh. 5 - Prob. 5.58ECh. 5 - Prob. 5.61ECh. 5 - Prob. 5.62E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Actually, the carbon in CO2(g) is thermodynamically unstable with respect to the carbon in calcium carbonate(limestone). Verify this by determining the standardGibbs free energy change for the reaction of lime,CaO(s), with CO2(g) to make CaCO3(s).arrow_forwardThe equilibrium constant Kc for the reaction N2(g) + O2(g)⇋ 2NO(g) at 1200 degrees Celsius is 1.00 x 10-5. Calculate the equilibrium molar concentrations of NO, N2, O2 in a reaction vessel of volume 10.00 L that initially held 0.312 mol N2 and 0.407 mol O2.arrow_forwardCarbon monoxide and water vapor, each at 200. Torr, were introduced into a container of volume 0.250 L. When the mixture reached equilibrium at 700 degrees Celsius, the partial pressure of CO2(g) was 88 Torr. Calculate the value of K for the equilibrium CO (g) + H2O (g)⇋ CO2(g)+H2(g).arrow_forward
- Hypochlorous acid (HOCI) is produced by bubbling chlorine through an agitated suspension of mercury(II) oxide in water. The chemical equation for this process is 2 Cl2(g) + 2 HgO(s) + H;O(€)=HgO · HgCl2(s) + 2 HOC(aq) Write the equilibrium expression for this reaction.arrow_forwardThe decomposition of a generic diatomic element in its standard state is represented by the equation X,(g) X(g) Assume that the standard molar Gibbs energy of formation of X(g) is 4.23 kJ · mol-1 at 2000. K and –56.22 kJ · mol-1 at 3000. K. Determine the value of the thermodynamic equilibrium constant, K, at each temperature. At 2000. K, AG; = 4.23 kJ · mol-1. What is K at that temperature? K at 2000. K = At 3000. K, AG{ -56.22 kJ · mol-1. What is K at that temperature? K at 3000. K =arrow_forwardC6H12O6(aq) + 6O2(g) 6CO2(g) + 6H2O(l)ΔH = –2802.7 kJ mol –1a) Write an expression for the equilibrium constant for this reaction.b) At equilibrium, the concentration of the reactants and products are determined as [CO2] = 0.30 M, [O2] = 0.040 M and [C6H12O6] = 0.065 M. Determine the value of the equilibrium constant (Kc) and predict the whether the products or reactants will be favoured at equilibrium.c) Given that the concentrations of the reactants and products at a particular time are [CO2] = 0.65 M, [O2] = 0.020 M and [C6H12O6] = 0.055 M, determine the reaction quotient (Qc). Compare the Kc and Qc values and predict the favoured direction of the reaction.d) Explain the effect on equilibrium of:i) Increasing temperatureii) Increasing pressureiii) Decreasing the concentration of oxygeniv) Increasing the concentration of carbon dioxidev) Adding a catalystarrow_forward
- Copper(I) ions in aqueous solution react with NH3 (aq) according to Cu+ (aq) + 2 NH3 (aq) · → Cu(NH3)2(aq) K₁ = 6.3 × 1010 Calculate the solubility (in g·L-¹) of CuBr(s) (Ksp = : 6.3 × 109) in 0.74 M NH3(aq). solubility of CuBr(s): g/Larrow_forwardSelect the reaction for which K, = Kc. 2 Na,0,(s) + 2 CO,(g) =2 Na,CO3(s) + 0,(g) 2 KCIO3 (s) = 2 KCI(s) + 30,(g) 2 H,S(g) + SO,(g)= 3 S(s) + 2 H,O(g) Br, (g) + Cl,(g) 2 BRCI(g)arrow_forwardGive a clear handwritten answerarrow_forward
- The decomposition of a generic diatomic element in its standard state is represented by the equation X₂(g) → X(g) Assume that the standard molar Gibbs energy of formation of X(g) is 4.71 kJ - mol-¹ at 2000. K and −55.51 kJ · mol-¹ at 3000. K. Determine the value of the thermodynamic equilibrium constant, K, at each temperature. At 2000. K, AG₁ = 4.71 kJ · mol-¹. What is K at that temperature? K at 2000. K= At 3000. K, AGf = −55.51 kJ - mol-¹. What is K at that temperature? K at 3000. K =arrow_forwardWhat partial pressure of hydrogen results in a molar concentration of 1.0 mmol dm-3 in water at 25 °c?arrow_forwardThe phase diagram for SO2 is shown here. (a) What doesthis diagram tell you about the enthalpy change in thereaction SO2(l) ---->SO2(g)? (b) Calculate the equilibriumconstant for this reaction at 100 °C and at 0 °C.(c) Why is it not possible to calculate an equilibrium constantbetween the gas and liquid phases in the supercriticalregion? (d) At which of the three points marked in reddoes SO2(g) most closely approach ideal-gas behavior?(e) At which of the three red points does SO2(g) behaveleast ideally?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY