Steel Design (Activate Learning with these NEW titles from Engineering!)
Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
Question
Book Icon
Chapter 4, Problem 4.7.10P
To determine

(a)

Axial Compressive design strength of column AB.

Expert Solution
Check Mark

Answer to Problem 4.7.10P

728kips

Explanation of Solution

Calculation:

calculate the ratio of column stiffness to girder at each and column AB by using the equation.

GA=ICLCIgLg

Here we have

G=ratio of column stiffness to girder stiffness

IC =Moment of inertia of column

Lg =Moment of inertia of girder

LC =Length of column

Lg =Length of column

GB=10

Here ratio of column stiffness to girder stiffness at end A is GA

For Joint A:

GA=ICLCIgLg

Substitute

IgLg=(80018+80020),IC=597,LC=15

GA=ICLCIgLg    =(59715)(80018+80020)     =0.471

Refer the alignment chart for the value of Kx=1.78

Calculate the effective slenderness ratio for column by using the equation

Here Kx is the effective length factor in X direction, rx is the radius of gyration in X direction, L is the length of the member between the supports

Effective slenderness ratio=KxLrx                                          =1.78(15×12)5.31                                          =60.34

Calculate the upper limit elasticity using the equation

Upper limit elasticity=4.71EFy                                 =4.712900050                                 =113.4

Since 60.34 is less than 113.34, the column is elastic

Calculate the factored load by LRFD by using the equation

Pu=1.2D+1.6L

He re D is the dead load, L is the live load

Substitute

D=50,L=150

Pu=1.2D+1.6L     =1.2(50)+1.6(150)     =300kips

Calculate the stress coming on the column

Stress=PuAgSubstitute Pu=300,Ag=21.1

Stress=PuAg         =30021.1         =14.22ksi

Refer table 421 form AISC steel manual τb=1.00

No modification is necessary

Calculate effective slenderness ratio in y direction

Effective slenderness ratio=KyLrySubstitute k=1.0,L=15ft,ry=3.04slenderness ratio=KyLry                          =1(15×12)883.04                          =59.21<60.34

Calculate the buckling stress using the formula.

Fe=π2E(KL/r)2Substitute E=29000,KL/r=60.34Fe=π2E(KL/r)2    =π22900060.342    =78.61ksi

Check for slenderness ratio by using the formula.

Slenderness ratio=4.71EFy

Here Fy is the yield strength

Fy=50ksi,E=29000

Slenderness ratio=4.712900050                           =113.4

Since 60.34 is less than 113.4, so calculate the buckling stress using the formula

Fcr=0.658(FyFe)Fy      =0.658(5078.61)(50)      =38.31ksi

Calculate the nominal compressive strength of column.

Pn=FcrAgHere we have Ag=21.1,Fcr=38.31,Pn=FcrAg    =38.31(21.1)    =808.3kipsCalculate the design strength of the column by LRFD method.

Pu=ϕPn     =0.9(808.3)     =728kips

Conclusion:

Hence, here the design strength is estimated using the formula: Pu=ϕP

ii.

To determine

Themaximum axial compressive strength of column AB.

ii.

Expert Solution
Check Mark

Answer to Problem 4.7.10P

484kips

Explanation of Solution

Calculation:

Calculate the factored load by ASD by using the equation

Pa=D+L

He re D is the dead load L is the live load

Substitute

D=50,L=150

Pa=D+L     =50+150     =200kips

Calculate stress coming on column.

Stress=PuAgPu=200,Ag=21.1Stress=PuAg         =20021.1         =9.47ksi

Refer table 421 form AISC steel manual τb=1

No modification is necessary

Calculate effective slenderness ratio in y direction

Effective slenderness ratio=KyLry

K=1.0,L=15ft,ry=3.04

slenderness ratio=KyLry                          =1(15×12)883.04                          =59.21<60.34

Calculate the buckling stress using the formula

Fe=π2E(KL/r)2Substitute E=29000,KL/r=60.34Fe=π2E(KL/r)2    =π22900060.342    =78.61ksi

Check for slenderness ratio by using the formula.

Slenderness ratio=4.71EFy

Here Fy is the yield strength.

Fy=50ksi,E=29000

Slenderness ratio=4.712900050                           =113.4

Since 60.34 is less than 113.4, so calculate the buckling stress using the formula.

Fcr=0.658(FyFe)Fy      =0.658(5078.61)(50)      =38.31ksi

Calculate the compressive strength of column.

Pn=FcrAgHere we have ,Ag=21.1,Fcr=38.31Pn=FcrAg    =38.31(21.1)    =808.3kips

Calculate the maximum strength by using the formula.

 Maximum  strength=PnΩ                              =808.31.67                             =484kips

Conclusion:

Therefore, the maximum strength is calculated using the formula:  Maximum  strength=PnΩ                             

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
PROBLEM 2: The rigid frame shown is unbraced. The members are oriented so that bending is about the strong axis. Support conditions in the direction perpendicular to the plane of the frame are such that Ky = 1.0. The beams are W410 x 85, and the columns are B W250 x 149. A992 steel is used. The axial 4.5 m compressive dead load is 400 kN, and the axial compressive live load is 490 kN. a. Determine the axial compressive design strength of column AB. 5.5 m 6.0 m b. Determine the allowable axial compressive strength of column AB.
The rigid frame shown is unbraced. The members are oriented so that bending is about the strong axis. Support conditions in the direction perpendicular to the plane of the frame are such that Ky = 1.0. The beams are W410 x 85, and the columns are W250 × 89. A992 steel is used, Fy=345 mPa. The axial compressive dead load is 750 kN and the axial compressive live load is 900 kN. Use the AISC alignment chart or Magdy I. Salama Formula for Kx. 4.5 m 5.5 m 6.0 m ly Cw Sx mm^2 mm^4 mm^3 1100 1510 A Ix rx Sy ry Zx Zy SECTION m mm^4 mm^3 378 mm^3 mm^3 mm^3 mm^9 1040 713 716 mm mm W250x89 4500 11400 143 W410x85 5500 10800 315 48.4 65.2 1230 574 1730 310 112 171 18 199 40.8 926 Which of the following best gives the axial strength of column AB? Use the NSCP 2015 LRFD specifications. O 2,340 kN 1,647 kN O 2,745 kN O 2,471 kN
The rigid frame shown is unbraced. The members are oriented so that bending is about the strong axis. Support conditions in the direction perpendicular to the plane of the frame are such that Ky = 1.0. The beams are W410 x 85, and the columns are W250 × 89. A992 steel is used, Fy=345 mPa. The axial compressive dead load is 750 kN and the axial compressive live load is 900 kN. Use the AISC alignment chart or Magdy I. Salama Formula for Kx. B 4.5 m 5.5 m 6.0 m Sx mm^2 mm^4 mm^3 1100 L A Ix Sy Zx Cw ly mm mm^4 mm^3 112 48.4 Zy mm mm^3 mm^3 mm^3 mm19 1040 SECTION ry 65.2 1230 574 713 W250x89 4500 11400 W410x85 5500 10800 315 143 378 1510 171 18 199 40.8 1730 310 926 716 Which of the following best gives the allowable axial strength of column AB? Use the NSCP 2015 LRFD specifications. O 1,647 kN 2,471 kN O 900 kN
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning