
(a)
Axial Compressive design strength of column AB.

Answer to Problem 4.7.10P
Explanation of Solution
Calculation:
calculate the ratio of column stiffness to girder at each and column AB by using the equation.
Here we have
G=ratio of column stiffness to girder stiffness
Here ratio of column stiffness to girder stiffness at end A is
For Joint A:
Substitute
Refer the alignment chart for the value of
Calculate the effective slenderness ratio for column by using the equation
Here
Calculate the upper limit elasticity using the equation
Since
Calculate the factored load by LRFD by using the equation
He re D is the dead load, L is the live load
Substitute
Calculate the stress coming on the column
Refer table
No modification is necessary
Calculate effective slenderness ratio in y direction
Calculate the buckling stress using the formula.
Check for slenderness ratio by using the formula.
Here
Since
Calculate the nominal compressive strength of column.
Conclusion:
Hence, here the design strength is estimated using the formula:
ii.
Themaximum axial compressive strength of column AB.
ii.

Answer to Problem 4.7.10P
Explanation of Solution
Calculation:
Calculate the factored load by ASD by using the equation
He re D is the dead load L is the live load
Substitute
Calculate stress coming on column.
Refer table
No modification is necessary
Calculate effective slenderness ratio in y direction
Effective
Calculate the buckling stress using the formula
Check for slenderness ratio by using the formula.
Here
Since
Calculate the compressive strength of column.
Calculate the maximum strength by using the formula.
Conclusion:
Therefore, the maximum strength is calculated using the formula:
Want to see more full solutions like this?
Chapter 4 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
- A study of the properties of metal plate-connected trusses used for roof support yielded the following observations on axial stiffness index (kips/in.) for plate lengths 4, 6, 8, 10, and 12 in: 4: 320.2 409.5 311.0 326.5 316.8 349.8 309.7 6: 401.1 347.2 361.0 404.5 331.0 348.9 381.7 8: 395.4 366.2 351.0 357.1 409.9 367.3 382.0 10: 356.7 452.9 461.4 433.1 410.6 384.2 362.6 12: 415.4 441.8 419.9 410.7 473.4 441.2 465.8 USE SALT Does variation in plate length have any effect on true average axial stiffness? State the relevant hypotheses using analysis of variance. O Ho M1 M2 M3 = μ4=μ5 Ha all five μ's are unequal Ho: M1 M2 M3 #44 #μ5 Ha all five μ's are equal Ho: M₁ μ2 43 #44 #μ5 H₁: at least two μ,'s are equal O Ho M1 M2 M3 = μ4=μ5 Ha at least two μ's are unequal Test the relevant hypotheses using analysis of variance with a = 0.01. Display your results in an ANOVA table. (Round your answers to two decimal places.) Degrees of Sum of Mean Source Squares Squares f freedom Treatments Error…arrow_forward1-Define a cartesion system 2 identify the structure's supports and the type of structure (2D) or 3D 3-If the structure has more than one element dismember the structure and draw free body diagram(show all actions and reactions) on each element independently 4- Determine the type of suports 5- show the unkown supports reactions with any assumed direction but you cannot change the assumed force direction once you dicede 6-In a common joint, you can dicide on the force direction in one element, however, in the other one you need to follow the Newton'ns 3rd law and shoe the opposite direction 7- if you have multiple actions forces in the system, find force components for each foce independently use Sin/Cos/Tan functions to find forces components in two perpendicular directions 8- Add forces in each direction since they are paralled forces Rx=fx Ry=fy Rz= fyarrow_forwardPhysical properties of six flame-retardant fabric samples were investigated in an article. Use the accompanying data and a 0.05 significance level to determine whether a linear relationship exists between stiffness x (mg-cm) and thickness y (mm). x y 8.08 24.33 12.39 6.99 23.97 35.64 0.25 0.68 0.30 0.28 0.82 0.57 State the appropriate null and alternative hypotheses. ○ Ho: p = 0 H₂: pO ○ Hop = 0 Hap #0 Compute the value of the sample correlation coefficient, r. Round your answer to four decimal places. Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your P-value to three decimal places.) P-value = State the conclusion in the problem context. O Fail to reject Ho. The data indicates that the population correlation coefficient differs from 0. Fail to reject Ho. The data does not indicate that the population correlation coefficient differs from 0. Reject Ho. The data indicates that the population correlation coefficient differs…arrow_forward
- 1-Define a cartesion system 2 identify the structure's supports and the type of structure (2D) or 3D 3-If the structure has more than one element dismember the structure and draw free body diagram(show all actions and reactions) on each element independently 4- Determine the type of suports 5- show the unkown supports reactions with any assumed direction but you cannot change the assumed force direction once you dicede 6-In a common joint, you can dicide on the force direction in one element, however, in the other one you need to follow the Newton'ns 3rd law and shoe the opposite direction 7- if you have multiple actions forces in the system, find force components for each foce independently use Sin/Cos/Tan functions to find forces components in two perpendicular directions 8- Add forces in each direction since they are paralled forces Rx=fx Ry=fy Rz= fyarrow_forward- - A study reports data on the effects of the drug tamoxifen on change in the level of cortisol-binding globulin (CBG) of patients during treatment. With age = x and ACBG = y, summary values are n = 26, Ex, = 1613, Σ(x, x)² = 3756.96, Ey, = 281.9, (y, v)² = 465.34, and Exy, = 16,709. (a) Compute a 90% CI for the true correlation coefficient p. (Round your answers to four decimal places.) (b) Test Ho: p =-0.5 versus Ha: p< -0.5 at level 0.05. Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your P-value to four decimal places.) P-value = State the conclusion in the problem context. Fail to reject Ho. There is evidence that p < -0.5. Reject Ho. There is no evidence that p < -0.5. Reject Ho. There is evidence that p < -0.5. Fail to reject Ho. There is no evidence that p < -0.5. (c) In a regression analysis of y on x, what proportion of variation in change of cortisol-binding globulin level could be explained by variation in…arrow_forwardThe authors of a paper presented a correlation analysis to investigate the relationship between maximal lactate level x and muscular endurance y. The accompanying data was read from a plot in the paper. 1,410 1,465 1,470 1,515 2,190 x 390 740 760 810 860 1,035 1,190 1,240 1,290 у 3.90 4.10 4.80 5.10 3.90 3.60 6.20 6.78 7.65 4.85 7.90 4.35 6.70 9.00 S = 2,619,058.929, S = 39.0467, S xx yy 7,588.061. A scatter plot shows a linear pattern. ху (a) Test to see whether there is a positive correlation between maximal lactate level and muscular endurance in the population from which this data was selected. (Use α = 0.05.) State the appropriate null and alternative hypotheses. O Ho: P = 0 H₂: p 0 Compute the value of the sample correlation coefficient, r. (Round your answer to four decimal places.) Calculate the test statistic and determine the P-value. (Round your test statistic to one decimal place and your P-value to three decimal places.) t P-value = State the conclusion in the problem…arrow_forward
- Procedure: 1- Define your Cartesian system. 2- Identify the structure's supports and the type of structure (2D) or 3D 3- If the structure has more than one element dismember the structure and draw free body diagram (show all actions and reactions) on each element independently. Tip: Pulley is a member Rope is not an element because it is flexible, but it shows the force (substitute it with a force) If the Structure has one element draw free body diagram for the element. Tips to show forces on the free body diagram: 3.1- Determine the type of the supports 3.2- Show the unknown support reactions with any assumed direction, BUT you cannot change the assumed force direction once you decide. 3.3- In a common joint, you can decide on the force direction in one element, however, in the other one you need to follow the Newton's 3rd law and show the opposite direction. 3.4- If you have multiple action forces in the system, find force components for each force independently. Use Sin/Cos/Tan…arrow_forwardProcedure: 1- Define your Cartesian system. 2- Identify the structure's supports and the type of structure (2D) or 3D 3- If the structure has more than one element dismember the structure and draw free body diagram (show all actions and reactions) on each element independently. Tip: Pulley is a member Rope is not an element because it is flexible, but it shows the force (substitute it with a force) If the Structure has one element draw free body diagram for the element. Tips to show forces on the free body diagram: 3.1- Determine the type of the supports 3.2- Show the unknown support reactions with any assumed direction, BUT you cannot change the assumed force direction once you decide. 3.3- In a common joint, you can decide on the force direction in one element, however, in the other one you need to follow the Newton's 3rd law and show the opposite direction. 3.4- If you have multiple action forces in the system, find force components for each force independently. Use Sin/Cos/Tan…arrow_forwardProcedure: 1- Define your Cartesian system. 2- Identify the structure's supports and the type of structure (2D) or 3D 3- If the structure has more than one element dismember the structure and draw free body diagram (show all actions and reactions) on each element independently. Tip: Pulley is a member Rope is not an element because it is flexible, but it shows the force (substitute it with a force) If the Structure has one element draw free body diagram for the element. Tips to show forces on the free body diagram: 3.1- Determine the type of the supports 3.2- Show the unknown support reactions with any assumed direction, BUT you cannot change the assumed force direction once you decide. 3.3- In a common joint, you can decide on the force direction in one element, however, in the other one you need to follow the Newton's 3rd law and show the opposite direction. 3.4- If you have multiple action forces in the system, find force components for each force independently. Use Sin/Cos/Tan…arrow_forward
- Procedure: 1- Define your Cartesian system. 2- Identify the structure's supports and the type of structure (2D) or 3D 3- If the structure has more than one element dismember the structure and draw free body diagram (show all actions and reactions) on each element independently. Tip: Pulley is a member Rope is not an element because it is flexible, but it shows the force (substitute it with a force) If the Structure has one element draw free body diagram for the element. Tips to show forces on the free body diagram: 3.1- Determine the type of the supports 3.2- Show the unknown support reactions with any assumed direction, BUT you cannot change the assumed force direction once you decide. 3.3- In a common joint, you can decide on the force direction in one element, however, in the other one you need to follow the Newton's 3rd law and show the opposite direction. 3.4- If you have multiple action forces in the system, find force components for each force independently. Use Sin/Cos/Tan…arrow_forwardThe Turbine Oil Oxidation Test (TOST) and the Rotating Bomb Oxidation Test (RBOT) are two different procedures for evaluating the oxidation stability of steam turbine oils. An article reported the accompanying observations on x = TOST time (hr) and y = RBOT time (min) for 12 oil specimens. TOST 4200 3600 3750 3625 4050 3100 RBOT 370 340 375 305 350 210 TOST 4670 RBOT 450 4500 395 3500 285 2900 3750 3350 260 345 285 (a) Calculate the value of the sample correlation coefficient. (Round your answer to four decimal places.) r = Interpret the value of the sample correlation coefficient. The value of r indicates that there is a strong, positive linear relationship between TOST and RBOT. The value of r indicates that there is a strong, negative linear relationship between TOST and RBOT ○ The value of r indicates that there is a weak, negative linear relationship between TOST and RBOT. O The value of r indicates that there is a weak, positive linear relationship between TOST and RBOT. (b) How…arrow_forwardUsing the conjugate beam method to determine the slop and vertical deflection at B. Take E=200GPa, I =70x10^8mm4, a=7m and w=16kN/marrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
