PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
7th Edition
ISBN: 9781119610526
Author: Mannering
Publisher: WILEY
Question
Book Icon
Chapter 3, Problem 39P
To determine

The stations and elevations of the PVCs, PVIsand  PVTs of the two vertical curves and length of the constant grade section.

Blurred answer
Students have asked these similar questions
1. A crest vertical curve connects a +1.5 % grade with a -2.5 % grade on a two-lane highway. The criterion selected for design is the minimum stopping sight distance for a design speed of 90 km/h based on AASHTO (2004) design criteria. If the grades intersect at station (14+465) at an elevation of 100 m, compute the station and elevation of BVC, EVC, and highest point. Also, compute the elevation of the curve at 50-m intervals. Display all results in a tabular form.
Highway Engineering: You are designing a highway to AASHTO guidelines on rolling terrain where the design speed will be 65 mi/h. At one section, a +1.25% grade and a -2.25% grade must be connected with an equal-tangent vertical curve. Determine the SSD given the reaction time of 2.5 sec and deceleration of 3.4 m/s^2. Determine also the minimum length of curve.
Design a vertical curve (i.e., Determine length of the curve as well as station and elevation of the vertical curve's PVC and PVT) with the given PVI (station and elevation given the figure below) to go through a future intersection location at the point at which the vertical curve is flat. Report the vertical curve's design speed to the nearest 5 miles per hour. PVC Future Intersection Station = 100+00 G1 = -2.6% PVT PVI G2 = 1.0% Station = 99+00 Elevation = 228 ft %3|
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning