An Introduction to Thermal Physics
An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
bartleby

Videos

Textbook Question
Book Icon
Chapter 2.6, Problem 35P

According to the Sackur-Tetrode equation, the entropy of a monatomic ideal gas can become negative when its temperature (and hence its energy) is sufficiently low. Of course this is absurd, so the Sackur-Tetrode equation must be invalid at very low temperatures. Suppose you start with a sample of helium at room temperature and atmospheric pressure, then lower the temperature holding the density fixed. Pretend that the helium remains a gas and does not liquefy. Below what temperature would the Sackur-Tetrode equation predict that S is negative? (The behavior of gases at very low temperatures is the main subject of Chapter 7.)

Blurred answer
Students have asked these similar questions
For either a monatomic ideal gas or a high-temperature Einstein solid, the entropy is given by Nk times some logarithm. The logarithm is never large, so if all you want is an order-of-magnitude estimate, you can neglect it and just say S - Nk. That is, the entropy in fundamental units is of the order of the rv number of particles in the system. This conclusion turns out to be true for most systems (with some important exceptions at low temperatures where the particles are behaving in an orderly way). So just for fun, make a very rough estimate of the entropy of each of the following: this book (a kilogram of carbon compounds); a moose (400 kg of water); the sun (2 x 1030 kg of ionized hydrogen).
For one component gas that is confined in a box with volume V. We can get the entropy of the gas as S= Nk, in- where N is the total a² number of atoms, a is the radius of the atom. Can you guess how it is obtained?
Hi, could I get some help with this macro-connection physics problem involving isothermal expansion? The set up is: For an isothermal reversible expansion of two moles of an ideal gas, what is the entropy change of the a) gas and b) the surroundings in J/K to 4 digits of precision if the gas volume quadruples, assuming NA = 6.022e23 and kB = 1.38e-23 J/K? Thank you.

Chapter 2 Solutions

An Introduction to Thermal Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY