Study Guide for Campbell Biology
Study Guide for Campbell Biology
11th Edition
ISBN: 9780134443775
Author: Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Jane B. Reece, Martha R. Taylor, Michael A. Pollock
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 23, Problem 6IQ

Why hasn’t the highly deleterious sickle-cell allele been selected against and eliminated from the gene pool of the U.S. population?

Why is this allele at such a relatively high frequency in the gene pool of some African populations?

Blurred answer
Students have asked these similar questions
In parts of equatorial Africa, where the malaria parasite is most common, the sickle-cell allele constitutes 20% of the ß-hemoglobin alleles in the human gene pool. The sickle cell trait provides an advantage against malaria compared to people with normal hemoglobin. In the United States, the parasite that causes malaria is not present, but African Americans whose ancestors were from equatorial Africa have the sickle-cell B- hemoglobin allele. These differences in traits illustrate O inclusive fitness because people have evolved molecular differences to adapt to environmental stimuli O inclusive fitness because ß-hemoglobin increases the proliferation of beneficial traits in the population O relative fitness because people have evolved molecular differences to an environmental pathogen O relative fitness because the molecular differences in ß-hemoglobin are passed to the next generation
Sickle cell anemia is caused by a recessive allele at a single gene. As we discussed in class, being a homozygote for the sickle cell allele is almost always lethal, but heterozygotes tend to be resistant against malaria although they have a mild form of anemia. Because of this heterozygote advantage, the allele for sickle cell anemia has a frequency of more than 10% in some human populations.     How would present allele frequencies of the sickle cell allele change, if there was no heterozygote advantage or disadvantage (that is, that heterozygotes would be identical to ‘normal’ homozygotes – no malaria resistance, no anemia)? How would the change in sickle cell allele frequencies compare to scenario a (extirpation of malaria)
The allele for sickle anemia is found at higher frequencies in central Africa than in other parts of the world.  What are the advantage and disadvantages?
Knowledge Booster
Background pattern image
Biology
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Biology (MindTap Course List)
    Biology
    ISBN:9781337392938
    Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
    Publisher:Cengage Learning
Text book image
Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning
Genetic Variation and Mutation | 9-1 GCSE Science Biology | OCR, AQA, Edexcel; Author: SnapRevise;https://www.youtube.com/watch?v=bLP8udGGfHU;License: Standard YouTube License, CC-BY