Fundamentals of General, Organic, and Biological Chemistry (8th Edition)
8th Edition
ISBN: 9780134015187
Author: John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 22.50AP
Interpretation Introduction
Interpretation:
Lactate converted into pyruvate under enzyme and co-enzyme conditions write the reaction in the standard biochemical format, using a curved to show involvement of
Concept Introduction:
Enzyme: This is highly specific both in the reactions that they catalyse and their choice of reactants, which are called substrates, enzymes usually catalyses a single
Aerobic and anaerobic: In the presence of oxygen or required oxygen to live.
Aerobic: In the presence of oxygen and Anaerobic: In the absence of oxygen.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Select the following enzymes that
utilize a mechanism involving
covalent catalysis. Triose phosphate
isomerase Glyceraldehyde 3-
Phosphate Dehydrogenase Aldolase
Class II Hexokinase Aldolase Class I
Hexokinase catalyzes the first step of glycolysis, in which glucose is phosphorylated to form glucose‑6‑phosphate. Give two reasons why a Mg2+ cation is required to facilitate this reaction.
What is the reduction potential (DE) for the reaction catalyzed by isocitrate
dehydrogenase if the citric acid cycle is fluxing?
To get the answer scored correctly: Please report the answer to three decimal
places. Example: 0.123 or -0.111
Do not include units.
Chapter 22 Solutions
Fundamentals of General, Organic, and Biological Chemistry (8th Edition)
Ch. 22.2 - Prob. 22.1PCh. 22.2 - Prob. 22.2PCh. 22.3 - Prob. 22.3PCh. 22.3 - Prob. 22.4PCh. 22.3 - Prob. 22.5PCh. 22.3 - Prob. 22.6KCPCh. 22.4 - Prob. 22.1CIAPCh. 22.4 - Prob. 22.2CIAPCh. 22.4 - Prob. 22.3CIAPCh. 22.4 - Explain the chemical process that leads to...
Ch. 22.4 - Prob. 22.5CIAPCh. 22.4 - Prob. 22.7PCh. 22.4 - Prob. 22.8PCh. 22.5 - In alcoholic fermentation, each mole of pyruvate...Ch. 22.5 - Name three ways humans have exploited the ability...Ch. 22.5 - Pyruvate has three different fates. What are the...Ch. 22.6 - Prob. 22.12PCh. 22.6 - Prob. 22.13PCh. 22.7 - Prob. 22.14PCh. 22.7 - Prob. 22.15PCh. 22.7 - Prob. 22.16KCPCh. 22.7 - Prob. 22.6CIAPCh. 22.7 - Prob. 22.7CIAPCh. 22.7 - Prob. 22.8CIAPCh. 22.8 - Prob. 22.17PCh. 22.8 - Prob. 22.18PCh. 22.9 - Prob. 22.19PCh. 22.9 - Prob. 22.20PCh. 22.9 - Prob. 22.21PCh. 22.9 - Prob. 22.9CIAPCh. 22.9 - Prob. 22.10CIAPCh. 22.9 - Prob. 22.11CIAPCh. 22.9 - Prob. 22.12CIAPCh. 22 - What class of enzymes catalyzes the majority of...Ch. 22 - Prob. 22.23UKCCh. 22 - Prob. 22.24UKCCh. 22 - Prob. 22.25UKCCh. 22 - Classify each enzyme of glycolysis into one of the...Ch. 22 - Prob. 22.27UKCCh. 22 - Name the molecules used for gluconeogenesis. What...Ch. 22 - Prob. 22.31APCh. 22 - Prob. 22.32APCh. 22 - Prob. 22.33APCh. 22 - Prob. 22.34APCh. 22 - Prob. 22.35APCh. 22 - Prob. 22.36APCh. 22 - Prob. 22.37APCh. 22 - Prob. 22.38APCh. 22 - Prob. 22.39APCh. 22 - Prob. 22.40APCh. 22 - Prob. 22.41APCh. 22 - Prob. 22.42APCh. 22 - Prob. 22.43APCh. 22 - Prob. 22.44APCh. 22 - Prob. 22.45APCh. 22 - Review the 10 steps in glycolysis (Figure 22.3)...Ch. 22 - Prob. 22.47APCh. 22 - Prob. 22.49APCh. 22 - Prob. 22.50APCh. 22 - Prob. 22.51APCh. 22 - How many moles of acetyl-CoA are produced by the...Ch. 22 - Prob. 22.53APCh. 22 - Prob. 22.54APCh. 22 - Prob. 22.55APCh. 22 - Prob. 22.56APCh. 22 - Prob. 22.57APCh. 22 - Prob. 22.58APCh. 22 - Prob. 22.59APCh. 22 - Why does glycogenolysis use fewer steps than the...Ch. 22 - Prob. 22.61APCh. 22 - Prob. 22.62APCh. 22 - Prob. 22.63APCh. 22 - Prob. 22.64APCh. 22 - Prob. 22.65APCh. 22 - Prob. 22.66APCh. 22 - Prob. 22.67APCh. 22 - Prob. 22.68APCh. 22 - Why can pyruvate cross the mitochondrial membrane...Ch. 22 - Look at the glycolysis pathway (Figure 22.3). With...Ch. 22 - Prob. 22.71CPCh. 22 - Prob. 22.72CPCh. 22 - Prob. 22.74CPCh. 22 - Prob. 22.75CPCh. 22 - Prob. 22.76CPCh. 22 - Why is it important for the cell that the NADH...Ch. 22 - Prob. 22.78CPCh. 22 - Prob. 22.79CPCh. 22 - Prob. 22.80CPCh. 22 - Prob. 22.81CPCh. 22 - Prob. 22.82GPCh. 22 - Prob. 22.83GPCh. 22 - It is important to avoid air when making wine, so...Ch. 22 - Prob. 22.85GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Similar questions
- which staments are falsearrow_forwardNAD+ coenzyme is required for the reaction of ethanol in the liver to ethanal and NADH. Write down the metabolic reaction below:arrow_forwardUnder standard conditions, will the following reaction proceed spontaneously as written? Fumarate + NADH + H+⇌ succinate + NAD+arrow_forward
- Helicobacter pylori, which causes gastric ulcers, does not operate a citric acid cycle but contains many of the citric acid cycle enzymes. H. pylori can convert oxaloacetate to succinate for biosynthetic processes. Write an equation for this conversion.arrow_forwardFollowing the brief descriptive style we employed in class for Vitamin B12-utilizing enzymes, propose a mechanism for the reaction depicted belowarrow_forwardGiven the following information, calculate the catalytic efficiency of the enzyme. Step by step please [S] = 100 mM k1 = 10 sec-1 k2 = 3000 sec-1 k-1 = 20 sec-1 [E]T = 1 \muμMarrow_forward
- When grown anaerobically on glucose, yeast (S. cerevisiae) converts pyruvate to acetaldehyde, then reduces acetaldehyde to Pethanol using electrons from NADH. Write the chemical equation for the reaction that reduces acetaldehyde (CH3CHO) to ethanol (CH3CH2OH). The table provides the standard reduction potential, E', of the relevant half-reactions. Half-reaction Acetaldehyde + 2 H+ + 2e¯ → ethanol NAD+ + 2H+ + 2e¯ → NADH + H+ E'° (V) -.197 -.320 Calculate the equilibrium constant, K'eq, at 25.0 °C for the reaction that reduces acetaldehyde to ethanol. K'e ×10 = eqarrow_forwardShow the complete reaction mechanism (including arrow pushing) for this reaction.arrow_forwardHow many ATP can be produced from the complete oxidation of myristic acid? (Assume that all acety) Co will enter the TC cycle). Type your solution.arrow_forward
- The reaction pictured is an oxidation-reduction reaction in the citric acid cycle in which the energy-carrier molecule NADH is generated. Identify which molecule in the reaction will be oxidized and which molecule will be reduced. Place a single answer choice in each box. COO- HO-C-H H-C-H COO- Malate NAD+ NADH + H+ Oxidized malate oxaloacetate COO- H-C-H ī COO- Oxaloacetate Reduced NADH NAD+arrow_forwardIn relation to Carbamoyl Phosphate Synthetase enzyme, answer the following: A- What are the two isoforms of this enzyme, explain why there are two isoforms? B- What are the clinical manifestations associated with the deficiency of these two enzymes? C- Write down the biochemical reaction and the name of the metabolic pathway that these two isoforms are involved in, and how many ATP is utilized by these two isoforms?arrow_forwardBalance the following net reaction that occurs during oxidative phosphorylation. Use the smallest whole integers possible for the reaction stoichiometry. NADH+ FADH₂ + ADP+ 0₂+H+PO, ¹ NAD+FAD+ ATP+ +H₂Oarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON
Biochemistry
Biochemistry
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:W. H. Freeman
Lehninger Principles of Biochemistry
Biochemistry
ISBN:9781464126116
Author:David L. Nelson, Michael M. Cox
Publisher:W. H. Freeman
Fundamentals of Biochemistry: Life at the Molecul...
Biochemistry
ISBN:9781118918401
Author:Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:WILEY
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Fundamentals of General, Organic, and Biological ...
Biochemistry
ISBN:9780134015187
Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:PEARSON
Metabolic Pathways; Author: Wisc-Online;https://www.youtube.com/watch?v=m61bQYio9ys;License: Standard Youtube License