Chemical Principles
Chemical Principles
8th Edition
ISBN: 9781305581982
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 48E

(a)

Interpretation Introduction

Interpretation: The value of ΔH for the given reaction in gas phase needs to be determined with the help of bond energy value:

  H2(g)+Cl2(g)2HCl(g)

Concept Introduction:

A chemical compound can be formed by either ionic bond or covalent bond between bonded atoms. The ionic compound is formed by opposite charge ions; cations and anions. The covalent compound is formed by sharing of electrons between bonded atoms.

The bond energy of a chemical bond can be defined as the energy required to break that chemical bond. The bond energy that is needed to break the bonds in reactant molecule and the energy released to form chemical bonds in product can be used to calculate the ΔH of the chemical reaction.

  ΔH=BEreactant BEproduct 

  ΔH of reaction can also be calculated with the help of standard heat of formation of reactant and product.

  ΔH =ΔHproduct ΔHreactant 

(a)

Expert Solution
Check Mark

Answer to Problem 48E

  ΔH is approximate same as calculated by the bond energy values.

Explanation of Solution

Given:

  H2(g)+Cl2(g)2HCl(g)

  ΔH=BEreactant BEproduct 

For the given reaction ΔH from bond energy ΔH= -183kJ/mol

Calculate ΔH from standard enthalpy of formation:

  ΔH =ΔHproduct ΔHreactant ΔH =2×ΔHHCl ΔHH2 +ΔHCl2 ΔH =2×(-92kJ/mol)- 0+0ΔH =  -184kJ/mol

Hence ΔH is approximate same as calculated by the bond energy values.

(b)

Interpretation Introduction

Interpretation: The value of ΔH for the given reaction in gas phase needs to be determined with the help of bond energy value:

  NN(g)+ 3H2(g)2NH3(g)

Concept Introduction:

A chemical compound can be formed by either ionic bond or covalent bond between bonded atoms. The ionic compound is formed by opposite charge ions; cations and anions. The covalent compound is formed by sharing of electrons between bonded atoms.

The bond energy of a chemical bond can be defined as the energy required to break that chemical bond. The bond energy that is needed to break the bonds in reactant molecule and the energy released to form chemical bonds in product can be used to calculate the ΔH of the chemical reaction.

  ΔH=BEreactant BEproduct 

  ΔH of reaction can also calculate with the help standard heat of formation of reactant and product.

  ΔH =ΔHproduct ΔHreactant 

(b)

Expert Solution
Check Mark

Answer to Problem 48E

  ΔH is not matched with the bond energy values.

Explanation of Solution

Given:

  NN(g)+ 3H2(g)2NH3(g)

  ΔH=BEreactant BEproduct 

For the given reaction from the bond energy ΔH= -109 kJ/mol

Calculate ΔH from standard enthalpy of formation:

  ΔH =ΔHproduct ΔHreactant ΔH =2×ΔHNH3 ΔHN2 +3×ΔHH2 ΔH =2×(-46kJ/mol)- 0+0ΔH =  - 92 kJ/mol

Hence, ΔH is not matched with the bond energy values.

(c)

Interpretation Introduction

Interpretation: The value of ΔH for the given reaction in gas phase needs to be determined with the help of bond energy value:

  H-CN(g)+ 2H2(g)CH3-NH2(g)

Concept Introduction:

A chemical compound can be formed by either ionic bond or covalent bond between bonded atoms. The ionic compound is formed by opposite charge ions; cations and anions. The covalent compound is formed by sharing of electrons between bonded atoms.

The bond energy of a chemical bond can be defined as the energy required to break that chemical bond. The bond energy that is needed to break the bonds in reactant molecule and the energy released to form chemical bonds in product can be used to calculate the ΔH of the chemical reaction.

  ΔH=BEreactant BEproduct 

  ΔH of reaction can also calculate with the help standard heat of formation of reactant and product.

  ΔH =ΔHproduct ΔHreactant 

(c)

Expert Solution
Check Mark

Answer to Problem 48E

Hence ΔH is approximate same as calculated by the bond energy values.

Explanation of Solution

Given:

  H-CN(g)+ 2H2(g)CH3-NH2(g)

  ΔH=BEreactant BEproduct 

For the given reaction ΔH= -158 kJ/mol calculated by bond energy values.

Calculate ΔH from standard enthalpy of formation:

  ΔH =ΔHproduct ΔHreactant ΔH =ΔHCH3NH2 ΔHHCN +2×ΔHH2 ΔH =(-44.68 kJ/mol)- 129.6 kJ/mol +0ΔH =  - 174.4 kJ/mol

Hence ΔH is approximate same as calculated by the bond energy values.

(d)

Interpretation Introduction

Interpretation: The value of ΔH

for the given reaction in gas phase needs to be determined with the help of bond energy value:

  Chemical Principles, Chapter 13, Problem 48E , additional homework tip  1

Concept Introduction:

A chemical compound can be formed by either ionic bond or covalent bond between bonded atoms. The ionic compound is formed by opposite charge ions; cations and anions. The covalent compound is formed by sharing of electrons between bonded atoms.

The bond energy of a chemical bond can be defined as the energy required to break that chemical bond. The bond energy that is needed to break the bonds in reactant molecule and the energy released to form chemical bonds in product can be used to calculate the ΔH of the chemical reaction.

  ΔH=BEreactant BEproduct 

  ΔH of reaction can also calculate with the help standard heat of formation of reactant and product.

  ΔH =ΔHproduct ΔHreactant 

(d)

Expert Solution
Check Mark

Answer to Problem 48E

  ΔH is approximate same as calculated by the bond energy values.

Explanation of Solution

  Chemical Principles, Chapter 13, Problem 48E , additional homework tip  2

  ΔH=BEreactant BEproduct 

For the given reaction ΔH= -1169 kJ/mol from the bond energy.

Calculate ΔH from standard enthalpy of formation:

  ΔH =ΔHproduct ΔHreactant ΔH =2×ΔHF2 +ΔHN2H4 ΔHN2 +4×ΔHHF ΔH =2×0 +10 - 0 +4×(-271kJ/mol)ΔH =1094kJ/mol

Hence ΔH is approximately same as calculated by the bond energy values.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 13 Solutions

Chemical Principles

Ch. 13 - Prob. 11DQCh. 13 - Prob. 12DQCh. 13 - Prob. 13ECh. 13 - Prob. 14ECh. 13 - An alternative definition of electronegativity...Ch. 13 - Prob. 16ECh. 13 - Without using Fig. 13.3, predict the order of...Ch. 13 - Without using Fig. 13.3, predict which bond in...Ch. 13 - Prob. 19ECh. 13 - Prob. 20ECh. 13 - Indicate the bond polarity (show the partial...Ch. 13 - Prob. 22ECh. 13 - Prob. 23ECh. 13 - Prob. 24ECh. 13 - Prob. 25ECh. 13 - Prob. 26ECh. 13 - Prob. 27ECh. 13 - Prob. 28ECh. 13 - Prob. 29ECh. 13 - Prob. 30ECh. 13 - Prob. 31ECh. 13 - Give an example of an ionic compound where both...Ch. 13 - What noble gas has the same electron configuration...Ch. 13 - Which of the following ions have noble gas...Ch. 13 - Give three ions that are isoelectronic with...Ch. 13 - Prob. 36ECh. 13 - Predict the empirical formulas of the ionic...Ch. 13 - Which compound in each of the following pairs of...Ch. 13 - Use the following data to estimate Hf for...Ch. 13 - Use the following data to estimate Hf for...Ch. 13 - Consider the following:...Ch. 13 - In general, the higher the charge on the ions in...Ch. 13 - Consider the following energy changes: a....Ch. 13 - Prob. 44ECh. 13 - Prob. 45ECh. 13 - The lattice energies of FeCl3,FeCl2,andFe2O3 are...Ch. 13 - Prob. 47ECh. 13 - Prob. 48ECh. 13 - Prob. 49ECh. 13 - Prob. 50ECh. 13 - Prob. 51ECh. 13 - Prob. 52ECh. 13 - Prob. 53ECh. 13 - Prob. 54ECh. 13 - Prob. 55ECh. 13 - Prob. 56ECh. 13 - Prob. 57ECh. 13 - Prob. 58ECh. 13 - Prob. 59ECh. 13 - Prob. 60ECh. 13 - Prob. 61ECh. 13 - Prob. 62ECh. 13 - Prob. 63ECh. 13 - Prob. 64ECh. 13 - Prob. 65ECh. 13 - Prob. 66ECh. 13 - Prob. 67ECh. 13 - Prob. 68ECh. 13 - Prob. 69ECh. 13 - Prob. 70ECh. 13 - Prob. 71ECh. 13 - Prob. 72ECh. 13 - Prob. 73ECh. 13 - Prob. 74ECh. 13 - Prob. 75ECh. 13 - Prob. 76ECh. 13 - Prob. 77ECh. 13 - Prob. 78ECh. 13 - Prob. 79ECh. 13 - Prob. 80ECh. 13 - Prob. 81ECh. 13 - Prob. 82ECh. 13 - Prob. 83ECh. 13 - Prob. 84ECh. 13 - Prob. 85ECh. 13 - Prob. 86ECh. 13 - Prob. 87ECh. 13 - Prob. 88ECh. 13 - Prob. 89ECh. 13 - Prob. 90ECh. 13 - Prob. 91ECh. 13 - Prob. 92ECh. 13 - Prob. 93ECh. 13 - Prob. 94ECh. 13 - Prob. 95ECh. 13 - Predict the molecular structure and the bond...Ch. 13 - Prob. 97ECh. 13 - Two variations of the octahedral geometry are...Ch. 13 - Prob. 99ECh. 13 - Predict the molecular structure and the bond...Ch. 13 - Which of the molecules in Exercise 96 have net...Ch. 13 - Prob. 102ECh. 13 - Give two requirements that should be satisfied for...Ch. 13 - What do each of the following sets of...Ch. 13 - Prob. 105ECh. 13 - Consider the following Lewis structure, where E is...Ch. 13 - Consider the following Lewis structure, where E is...Ch. 13 - Prob. 108ECh. 13 - Prob. 109ECh. 13 - Which of the following molecules have net dipole...Ch. 13 - Prob. 111AECh. 13 - Prob. 112AECh. 13 - Prob. 113AECh. 13 - Prob. 114AECh. 13 - Prob. 115AECh. 13 - There are two possible structures of XeF2Cl2 ,...Ch. 13 - Prob. 117AECh. 13 - Prob. 118AECh. 13 - Prob. 119AECh. 13 - Prob. 120AECh. 13 - Prob. 121AECh. 13 - Prob. 122AECh. 13 - Prob. 123AECh. 13 - Prob. 124AECh. 13 - Prob. 125AECh. 13 - Prob. 126AECh. 13 - Prob. 127AECh. 13 - Prob. 128AECh. 13 - Prob. 129AECh. 13 - Prob. 130AECh. 13 - Prob. 131AECh. 13 - Prob. 132AECh. 13 - Prob. 133CPCh. 13 - Prob. 134CPCh. 13 - Given the following information: Heat of...Ch. 13 - Prob. 136CPCh. 13 - A promising new material with great potential as...Ch. 13 - Think of forming an ionic compound as three steps...Ch. 13 - Prob. 139CPCh. 13 - Prob. 140CPCh. 13 - Calculate the standard heat of formation of the...Ch. 13 - Prob. 142CPCh. 13 - Prob. 143MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Types of bonds; Author: Edspira;https://www.youtube.com/watch?v=Jj0V01Arebk;License: Standard YouTube License, CC-BY