Mathematical Statistics with Applications
7th Edition
ISBN: 9780495110811
Author: Dennis Wackerly, William Mendenhall, Richard L. Scheaffer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11.14, Problem 85E
a.
To determine
Check whether there is sufficient evidence that at least one of the independent variables contributes significant information for the prediction of selling price.
b.
To determine
Compute the value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The general manager of an engineering firm wants to know whether a technical artist's experience influences the quality of his or her work. A random sample of 24 artists
is selected and their years of work experience and quality rating (as assessed by their supervisors) recorded. Work experience (EXPER) is measured in years and quality
rating (RATING) takes a value of 1 through 7, with 7 = excellent and 1 = poor. The simple regression model RATING = ẞ1 + ẞ₂EXPER+ € is proposed. The least
squares estimates of the model, and the standard errors of the estimates, are
RATING= 3.204 +0.076EXPER
(se)
(0.709) (0.044)
(a) Interpret the coefficient of EXPER.
(b) Construct a 95% confidence interval for B2, the slope of the relationship between quality rating and experience. In what are you 95% confident?
(c) Test the null hypothesis that ẞ2 is zero against the alternative that it is not using a two-tail test and the α = 0.05 level of significance. What do you
conclude?
(d) Test the null…
Bill wants to explore factors affecting work stress. He would like to examine the relationship between age, number of years at the workplace, perceived social support, and work stress. He collects data on the variables from 100 employees (males and females) working in banks.
The research question is
How accurately can work stress be predicted from linear combination of the predictors (age, social support, number of years at the workplace)?
Conduct a multiple regression analysis to answer the following questions:
What is the regression equation for all the predictors?
Write a results section based on your analysis that answers the research question.
Bill wants to explore factors affecting work stress. He would like to examine the relationship between age, number of years at the workplace, perceived social support, and work stress. He collects data on the variables from 100 employees (males and females) working in banks.
The research question is
How accurately can work stress be predicted from linear combination of the predictors (age, social support, number of years at the workplace)?
Conduct a multiple regression analysis to answer the following questions:
What is the relationship of age, number of years, and social support with work stress?
Is the regression significant? If yes, what does it indicate?
Chapter 11 Solutions
Mathematical Statistics with Applications
Ch. 11.3 - If 0 and 1 are the least-squares estimates for the...Ch. 11.3 - Prob. 2ECh. 11.3 - Fit a straight line to the five data points in the...Ch. 11.3 - Auditors are often required to compare the audited...Ch. 11.3 - Prob. 5ECh. 11.3 - Applet Exercise Refer to Exercises 11.2 and 11.5....Ch. 11.3 - Prob. 7ECh. 11.3 - Laboratory experiments designed to measure LC50...Ch. 11.3 - Prob. 9ECh. 11.3 - Suppose that we have postulated the model...
Ch. 11.3 - Some data obtained by C.E. Marcellari on the...Ch. 11.3 - Processors usually preserve cucumbers by...Ch. 11.3 - J. H. Matis and T. E. Wehrly report the following...Ch. 11.4 - a Derive the following identity:...Ch. 11.4 - An experiment was conducted to observe the effect...Ch. 11.4 - Prob. 17ECh. 11.4 - Prob. 18ECh. 11.4 - A study was conducted to determine the effects of...Ch. 11.4 - Suppose that Y1, Y2,,Yn are independent normal...Ch. 11.4 - Under the assumptions of Exercise 11.20, find...Ch. 11.4 - Prob. 22ECh. 11.5 - Use the properties of the least-squares estimators...Ch. 11.5 - Do the data in Exercise 11.19 present sufficient...Ch. 11.5 - Use the properties of the least-squares estimators...Ch. 11.5 - Let Y1, Y2, . . . , Yn be as given in Exercise...Ch. 11.5 - Prob. 30ECh. 11.5 - Using a chemical procedure called differential...Ch. 11.5 - Prob. 32ECh. 11.5 - Prob. 33ECh. 11.5 - Prob. 34ECh. 11.6 - For the simple linear regression model Y = 0 + 1x...Ch. 11.6 - Prob. 36ECh. 11.6 - Using the model fit to the data of Exercise 11.8,...Ch. 11.6 - Refer to Exercise 11.3. Find a 90% confidence...Ch. 11.6 - Refer to Exercise 11.16. Find a 95% confidence...Ch. 11.6 - Refer to Exercise 11.14. Find a 90% confidence...Ch. 11.6 - Prob. 41ECh. 11.7 - Suppose that the model Y=0+1+ is fit to the n data...Ch. 11.7 - Prob. 43ECh. 11.7 - Prob. 44ECh. 11.7 - Prob. 45ECh. 11.7 - Refer to Exercise 11.16. Find a 95% prediction...Ch. 11.7 - Refer to Exercise 11.14. Find a 95% prediction...Ch. 11.8 - The accompanying table gives the peak power load...Ch. 11.8 - Prob. 49ECh. 11.8 - Prob. 50ECh. 11.8 - Prob. 51ECh. 11.8 - Prob. 52ECh. 11.8 - Prob. 54ECh. 11.8 - Prob. 55ECh. 11.8 - Prob. 57ECh. 11.8 - Prob. 58ECh. 11.8 - Prob. 59ECh. 11.8 - Prob. 60ECh. 11.9 - Refer to Example 11.10. Find a 90% prediction...Ch. 11.9 - Prob. 62ECh. 11.9 - Prob. 63ECh. 11.9 - Prob. 64ECh. 11.9 - Prob. 65ECh. 11.10 - Refer to Exercise 11.3. Fit the model suggested...Ch. 11.10 - Prob. 67ECh. 11.10 - Fit the quadratic model Y=0+1x+2x2+ to the data...Ch. 11.10 - The manufacturer of Lexus automobiles has steadily...Ch. 11.10 - a Calculate SSE and S2 for Exercise 11.4. Use the...Ch. 11.12 - Consider the general linear model...Ch. 11.12 - Prob. 72ECh. 11.12 - Prob. 73ECh. 11.12 - An experiment was conducted to investigate the...Ch. 11.12 - Prob. 75ECh. 11.12 - The results that follow were obtained from an...Ch. 11.13 - Prob. 77ECh. 11.13 - Prob. 78ECh. 11.13 - Prob. 79ECh. 11.14 - Prob. 80ECh. 11.14 - Prob. 81ECh. 11.14 - Prob. 82ECh. 11.14 - Prob. 83ECh. 11.14 - Prob. 84ECh. 11.14 - Prob. 85ECh. 11.14 - Prob. 86ECh. 11.14 - Prob. 87ECh. 11.14 - Prob. 88ECh. 11.14 - Refer to the three models given in Exercise 11.88....Ch. 11.14 - Prob. 90ECh. 11.14 - Prob. 91ECh. 11.14 - Prob. 92ECh. 11.14 - Prob. 93ECh. 11.14 - Prob. 94ECh. 11 - At temperatures approaching absolute zero (273C),...Ch. 11 - A study was conducted to determine whether a...Ch. 11 - Prob. 97SECh. 11 - Prob. 98SECh. 11 - Prob. 99SECh. 11 - Prob. 100SECh. 11 - Prob. 102SECh. 11 - Prob. 103SECh. 11 - An experiment was conducted to determine the...Ch. 11 - Prob. 105SECh. 11 - Prob. 106SECh. 11 - Prob. 107SE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Find the equation of the regression line for the following data set. x 1 2 3 y 0 3 4arrow_forwardThe accompanying data represent the weights of various domestic cars and their gas mileages in the city. The linear correlation coefficient between the weight of a car and its miles per gallon in the city is r= - 0.984. The least-squares regression line treating weight as the explanatory variable and miles per gallon as the response variable is y = - 0.0066x + 43.3954. Complete parts (a) and (b) below. Click the icon to view the data table. (a) What proportion of the variability in miles per gallon is explained by the relation between weight of the car and miles per gallon? Data Table The proportion of the variability in miles per gallon explained by the relation between weight of the car and miles per gallon is %. (Round to one decimal place as needed.) (b) Interpret the coefficient of determination. Full data set % of the variance in is by the linear model. Miles per Miles per Weight (pounds), x Weight (pounds), x Car Car (Round to one decimal place as needed.) Gallon, y Gallon, y…arrow_forwardBill wants to explore factors affecting work stress. He would like to examine the relationship between age, number of years at the workplace, perceived social support, and work stress. He collects data on the variables from 100 employees (males and females) working in banks. The research question is How accurately can work stress be predicted from linear combination of the predictors (age, social support, number of years at the workplace)? Conduct a multiple regression analysis to answer the following questions: State the hypothesis for this study.arrow_forward
- The accompanying data represent the weights of various domestic cars and their gas mileages in the city. The linear correlation coefficient between the weight of a car and its miles per gallon in the city is r= - 0.972. The least-squares regression line treating weight as the explanatory variable and miles per gallon as the response variable is y= - 0.0070x + 44.4405. Complete parts (a) and (b) below. Click the icon to view the data table. ..... (a) What proportion of the variability in miles per gallon is explained by the relation between weight of the car and miles per gallon? The proportion of the variability in miles per gallon explained by the relation between weight of the car and miles per gallon is %. (Round to one decimal place as needed.) (b) Interpret the coefficient of determination. % of the variance in is by the linear model. Data Table (Round to one decimal p Full data set gas mileage Miles per Weight (pounds), x Weight (pounds), x Miles per Gallon, y Car Car Gallon, y…arrow_forwardThe St. Lucian Government is interested in predicting the number of weekly riders on the public buses using the following variables: • • • • Price of bus trips per weekThe population in the cityThe monthly income of ridersAverage rate to park your personal vehicle Determine the multiple regression equation for the data. What is the predicted value of the number of weekly riders if: price of bus trips per week = $24; population = $2,000,000; the monthly income of riders = $13,500; and average rate to park your personal vehicle = $150. Interpret the coefficient of determination.arrow_forwardThe largest commercial fishing enterprise in the southeastern United States is the harvest of shrimp. In a study, researchers monitored variables thought to be related to the abundance of white shrimp. One variable the researchers thought might be related to abundance is the amount of oxygen in the water. The relationship between mean catch per tow of white shrimp and oxygen concentration was described by fitting a regression line using data from ten randomly selected offshore sites. (The "catch" per tow is the number of shrimp caught in a single outing.) Computer output is shown below. The regression equation is Mean catch per tow = -5855 + 97.4 O2 Saturation Predictor Coef SE Coef T P Constant -5855 2393 -2.45 0.040 O2 Saturation 97.4 34.62 2.81 0.023 c)Construct a 95% confidence interval for ?. (Use a table or technology. Round your answers to three decimal places.) d)What margin of error is associated with the confidence interval in part (c)? (Round your…arrow_forward
- Is the number of calories in a beer related to the number of carbohydrates and/or the percentage of alcohol in the beer? The accompanying table has data for 35 beers. The values for three variables are included: the number of calories per 12ounces, the alcohol percentage, and the number of carbohydrates (in grams) per 12 ounces. a. Perform a multiple linear regression analysis, using calories as the dependent variable and percentage alcohol and number of carbohydrates as the independent variables. Let X1 represent alcohol percentage and let X2 represent the number of carbohydrates. (Round to four decimal places as needed.)arrow_forwardThe superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X, = Salaries and X, = Spending. Click the icon to view the results. Determine whether the following statement is true or false: You can conclude definitively that mean teacher salary individually has no impact on the mean percentage of students passing the proficiency test, taking into account the effect of instructional spending per pupil, at a 1% level of significance based solely on but not actually computing the 99% confidence interval estimate for B, - X Regression Statistics O False Regression Statistics Multiple R 0.4276 True…arrow_forwardIsabelle is a crime scene investigator. She found a footprint at the site of a recent murder and believes the footprint belongs to the culprit. To help identify possible suspects, she is investigating the relationship between a person's height and the length of his or her footprint. She consulted her agency's database and found cases in which detectives had recorded the length of people's footprints, x, and their heights (in centimetres), y. The least squares regression line of this data set is: y = 2.488x + 114.001 omplete the following sentence: The least squares regression line predicts that someone whose footprint is one centimetre longer should be centimetres taller.arrow_forward
- This is only one questionarrow_forwardThe superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y= % Passing as the dependent variable, X, = Salaries and X, = Spending. E Click the icon to view the multiple regression output. Determine whether the following statement is true or false: The null hypothesis Hn: B, = B, = 0 implies that percentage of students passing the proficiency test is not related to one of the explanatory variables. Multiple Regression Output True False Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA df SS MS F Significance F Regression 323.8284 161.9142 4.9227 0.0118…arrow_forwardThe superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y= % Passing as the dependent variable, X, = Salaries and X, = Spending. E Click the icon to view the results. Determine whether the following statement is true or false: You can conclude definitively that mean teacher salary individually has no impact on the mean percentage of students passing the proficiency test, taking into account the effect of that instructional spending per pupil, at a 10% level of significance based solely on but not actually computing the 90% confidence interval estimate for B,. - X Regression Statistics True Regression Statistics False Multiple R…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY