Theory and Design for Mechanical Measurements
Theory and Design for Mechanical Measurements
6th Edition
ISBN: 9781118881279
Author: Richard S. Figliola, Donald E. Beasley
Publisher: WILEY
bartleby

Videos

Textbook Question
Book Icon
Chapter 8, Problem 8.35P

Chapter 8, Problem 8.35P, Figure 8.48 Schematic diagram for Problems 8.33, 34, and 35. 8.35 An iron-constantan thermocouple is , example  1

Chapter 8, Problem 8.35P, Figure 8.48 Schematic diagram for Problems 8.33, 34, and 35. 8.35 An iron-constantan thermocouple is , example  2Chapter 8, Problem 8.35P, Figure 8.48 Schematic diagram for Problems 8.33, 34, and 35. 8.35 An iron-constantan thermocouple is , example  3

Figure 8.48 Schematic diagram for Problems 8.33, 34, and 35.

8.35 An iron-constantan thermocouple is placed in a moving air stream in a duct, as shown in Figure 8.48. The air flows at 180 ft/sec. The emissivity of the thermocouple is 0.7 and the recovery factor is 0.7. The wall temperature, Twis 500 °F. The thermocouple reference junction is maintained at 32 °F. The emf output from the thermocouple is 20 mV.

  1. Determine the thermocouple junction temperature.
  2. By considering recovery and radiation errors, estimate the possible value for total error in the indicated temperature. Discuss whether this estimate of the measurement error is conservative and why, or why not. The heat-transfer coefficient may be taken as 40 Btu/hr-ft °F, and the specific heat as cp= 0.24 Btu/lbm°F.

Blurred answer
Students have asked these similar questions
6. A Thomas meter is located in an air duct of 2 sq ft cross-sectional area. The air weighs 0.083 lb per cu ft, and its specific heat is 0.24. Assume a controlled temperature differential of 5° and heater potential of 110 volts. Plot the velocity as abscissa and amperage as ordinate for veloc- ity 0 to 300 ft per min. Assume constant amperage of 3, and plot tem- perature difference against velocity. Discuss the curves from the stand- point of accuracy of the system. J: よ itet legeted oulindriool oir tube
a. An air stream passing through a 2-inch (1/6 ft) diameter, thin-walled tube is to be heated by high- pressure steam condensing on the outer surface of the tube at 320 °F. The overall heat transfer coefficient, h between steam and air can be assumed to be 25 Btu/(ft2.hr °F) with the air entering at 100 ft/sec, 10 psia, 40 °F. The air is to be heated to 150 °F. Determine the tube length required. Assuming Rayleigh Line flow, calculate the static pressure change due to heat addition. Also, for the same inlet conditions, calculate the pressure drop due to friction, assuming Fanno flow in the duct with f = 0.018. b. c. d. To obtain an approximation to the overall pressure drop in this heat exchanger, add the two results. Discuss the accuracy of this calculation.
An air-cooled condenser has an expected U value of 30 based on the air-side area. The m²-k condenser is to transfer 60 kW with an airflow rate of 15 kg/s entering at 35°C. If the condensing temperature is to be 48°C, what is the required air-side area? Recall Cp,air = 1.0- kg-K kJ

Chapter 8 Solutions

Theory and Design for Mechanical Measurements

Ch. 8 - 8.11 A thermistor is placed in a 100 °C...Ch. 8 - Prob. 8.12PCh. 8 - Prob. 8.13PCh. 8 - The thermocouple circuit in Figure 8.45 represents...Ch. 8 - The thermocouple circuit in Figure 8.45 represents...Ch. 8 - The thermocouple circuit in Figure 8.45 is...Ch. 8 - 8.17 a. The thermocouple shown in Figure 8.46a...Ch. 8 - Prob. 8.18PCh. 8 - Prob. 8.19PCh. 8 - A temperature measurement requires an uncertainty...Ch. 8 - A temperature difference of 3.0 °C is measured...Ch. 8 - Complete the following table for a J-type...Ch. 8 - Complete the following table for a T-type...Ch. 8 - Prob. 8.24PCh. 8 - 8.25 You are employed as a heating, ventilating,...Ch. 8 - A J-type thermocouple for use at temperatures...Ch. 8 - A J-type thermocouple is calibrated against an RTD...Ch. 8 - A beaded thermocouple is placed in a duct in a...Ch. 8 - Consider a welded thermocouple bead that...Ch. 8 - Prob. 8.30PCh. 8 - Prob. 8.31PCh. 8 - Consider the typical construction of a sheathed...Ch. 8 - An iron-constantan thermocouple is placed in a...Ch. 8 - Figure 8.48 Schematic diagram for Problems 8.33,...Ch. 8 - Figure 8.48 Schematic diagram for Problems 8.33,...Ch. 8 - 8.36 In Example 8.5, an uncertainty value for Rf...Ch. 8 - The thermocouple circuit shown in Figure 8.49...Ch. 8 - Prob. 8.38PCh. 8 - 8.39 A thin-film heat flux sensor employs a K-type...Ch. 8 - A thin-film heat flux sensor has a sensitivity uV...Ch. 8 - 8.41 A T-type thermopile is used to measure...Ch. 8 - 8.42 A T-type thermocouple referenced to 0 °C is...Ch. 8 - A T-type thermocouple referenced to 0 °C develops...Ch. 8 - 8.44 A temperature measurement system consists of...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License