Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 49Q
To determine
The difference in the theory for the formation of the planetary system that has planets which orbit a star along randomly inclined orbits and the theory for the formation of the planetary system of the solar system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
helpp plz
Nearly all planets that astronomers have found orbiting other stars have been giant planets with masses more like Jupiter than Earth, and with orbits located very close to their parent stars. Does this prove that our Solar System is unique? Explain your answer.
Does the Kepler's Third Law of planetary motion applies to Pluto? Explain
Chapter 8 Solutions
Universe: Stars And Galaxies
Ch. 8 - Prob. 1QCh. 8 - Prob. 2QCh. 8 - Prob. 3QCh. 8 - Prob. 4QCh. 8 - Prob. 5QCh. 8 - Prob. 6QCh. 8 - Prob. 7QCh. 8 - Prob. 8QCh. 8 - Prob. 9QCh. 8 - Prob. 10Q
Ch. 8 - Prob. 11QCh. 8 - Prob. 12QCh. 8 - Prob. 13QCh. 8 - Prob. 14QCh. 8 - Prob. 15QCh. 8 - Prob. 16QCh. 8 - Prob. 17QCh. 8 - Prob. 18QCh. 8 - Prob. 19QCh. 8 - Prob. 20QCh. 8 - Prob. 21QCh. 8 - Prob. 22QCh. 8 - Prob. 23QCh. 8 - Prob. 24QCh. 8 - Prob. 25QCh. 8 - Prob. 26QCh. 8 - Prob. 27QCh. 8 - Prob. 28QCh. 8 - Prob. 29QCh. 8 - Prob. 30QCh. 8 - Prob. 31QCh. 8 - Prob. 32QCh. 8 - Prob. 33QCh. 8 - Prob. 34QCh. 8 - Prob. 35QCh. 8 - Prob. 36QCh. 8 - Prob. 37QCh. 8 - Prob. 38QCh. 8 - Prob. 39QCh. 8 - Prob. 40QCh. 8 - Prob. 41QCh. 8 - Prob. 42QCh. 8 - Prob. 43QCh. 8 - Prob. 44QCh. 8 - Prob. 45QCh. 8 - Prob. 46QCh. 8 - Prob. 47QCh. 8 - Prob. 48QCh. 8 - Prob. 49QCh. 8 - Prob. 50QCh. 8 - Prob. 51QCh. 8 - Prob. 52Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the difference between a planetesimal and a protoplanet?arrow_forwardHow do the planets discovered so far around other stars differ from those in our own solar system? List at least two ways.arrow_forwardWhere would you look for some “original” planetesimals left over from the formation of our solar system?arrow_forward
- Describe the solar nebula, and outline the sequence of events within the nebula that gave rise to the planetesimals.arrow_forwardPresent theory suggests that giant planets cannot form without condensation of water ice, which becomes vapor at the high temperatures close to a star. So how can we explain the presence of jovian-sized exoplanets closer to their star than Mercury is to our Sun?arrow_forwardWe think the terrestrial planets formed around solid “seeds” that later grew over time through the accretion of rocks and metals. a) Suppose the Earth grew to its present size in 1 million years through the accretion of particles averaging 100 grams each. On average, how many particles did the Earth capture per second, given that the mass of the Earth is = 5.972 × 10 ^24 kg ? b) If you stood on Earth during its formation and watched a region covering 100 m^2, how many impacts would you expect to see in one hour. Use the impact rate you calculated in part a. You’ll need the following as well: the radius of the Earth is = 6.371 × 10 ^6 m and the surface area of the Earth is 4??^2Eartharrow_forward
- Calculate the escape velocity to an orbit of 393 km height from a planet with the radius of 2000 km and the density of 3400 kg-m³. Give your answer in Sl units.arrow_forwardUsing high resolution adaptive optical techniques, observations of a nearby (9.5 pc) cool star of mass 0.2 solar masses indicate the presence of a small rocky exoplanet in a circular orbit with a radius of 0.01 arcseconds. Using Kepler's Laws, estimate the period of the exoplanet's orbit in days. select units Aarrow_forwardWhich of these views cannot be used when trying to detect exoplanets using the radial velocity method? XYZ all of these can be observed using the radial velocity method none of these can be observed using the radial velocity method? X Y Z all of these can be observed using the radial velocity method none of these can be observed using the radial velocity method Figure X to Earth Figure Y to Earth Figure Z to Earth Which of the systems above could not be detected using the transit method?arrow_forward
- Why do we think that planets in our Solar System were not formed out of the gaseous disk by direct gravitational collapse? Planets are formed in disks. Disks rotate too fast to collapse gravitationally to form planets. In disks that are not massive enough, tidal gravity of the central star prevents the disk gas from collapsing. The material in the disk orbits close to the star. This makes the disk too hot, and pressure support prevented the disk from gravitational collapse. The gravity of the forming planets was not enough to accrete gas.arrow_forwardImagine a trans-Neptunian object with roughly the same mass as Earth but located 50 AU from the sun. a) based on the solar nebula theory, what do you think this object would be made of and why? b) on the basis of speculation, assume a reasonable density for this object and calculate its diameter in units of Earth radii.arrow_forwardImagine that astronomers have just discovered a planet orbiting another star (other than the Sun), and they have reported the mass of the planet as 4.2 Jupiter-masses. Explain in a few words what this means.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY