Using high resolution adaptive optical techniques, observations of a nearby (9.5 pc) cool star of mass 0.2 solar masses indicate the presence of a small rocky exoplanet in a circular orbit with a radius of 0.01 arcseconds. Using Kepler's Laws, estimate the period of the exoplanet's orbit in days. select units A

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter7: Gravity
Section: Chapter Questions
Problem 14PQ: Since 1995, hundreds of extrasolar planets have been discovered. There is the exciting possibility...
icon
Related questions
Question
Using high resolution adaptive optical techniques, observations of a nearby (9.5 pc) cool star of mass 0.2 solar masses indicate the presence of a small
rocky exoplanet in a circular orbit with a radius of 0.01 arcseconds. Using Kepler's Laws, estimate the period of the exoplanet's orbit in days.
select units A
Transcribed Image Text:Using high resolution adaptive optical techniques, observations of a nearby (9.5 pc) cool star of mass 0.2 solar masses indicate the presence of a small rocky exoplanet in a circular orbit with a radius of 0.01 arcseconds. Using Kepler's Laws, estimate the period of the exoplanet's orbit in days. select units A
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Kepler's Laws
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Horizons: Exploring the Universe (MindTap Course …
Horizons: Exploring the Universe (MindTap Course …
Physics
ISBN:
9781305960961
Author:
Michael A. Seeds, Dana Backman
Publisher:
Cengage Learning
Astronomy
Astronomy
Physics
ISBN:
9781938168284
Author:
Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:
OpenStax