Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 42Q
To determine
The specialty of the habitable zone and is every planet in this zone is like Earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How does the habitable zone differ for a star hotter than the sun?
Which of the following is least reasonable regarding the concept of a habitable zone?
Group of answer choices
M-type stars have wider habitable zones than G-type stars.
It is a region around a star where liquid water could be found on a planet's surface.
The habitable zone of a less massive star would be closer to the star.
In the course of millions of years, our habitable zone will slowly shift from Earth to Mars.
The Galactic habitable zone cannot be too close to the Galactic center because the radiation from the bright stars and supernovae in the crowded inner part of the Galaxy would probably be detrimental to life.
A newly discovered star was found to have a surface temperature of approximately 5185 K. If an astrologist wanted to look for potentially habitable planets, what is the maximum distance from the star to reach its solar system's 'Goldilocks Zone'?
Chapter 8 Solutions
Universe: Stars And Galaxies
Ch. 8 - Prob. 1QCh. 8 - Prob. 2QCh. 8 - Prob. 3QCh. 8 - Prob. 4QCh. 8 - Prob. 5QCh. 8 - Prob. 6QCh. 8 - Prob. 7QCh. 8 - Prob. 8QCh. 8 - Prob. 9QCh. 8 - Prob. 10Q
Ch. 8 - Prob. 11QCh. 8 - Prob. 12QCh. 8 - Prob. 13QCh. 8 - Prob. 14QCh. 8 - Prob. 15QCh. 8 - Prob. 16QCh. 8 - Prob. 17QCh. 8 - Prob. 18QCh. 8 - Prob. 19QCh. 8 - Prob. 20QCh. 8 - Prob. 21QCh. 8 - Prob. 22QCh. 8 - Prob. 23QCh. 8 - Prob. 24QCh. 8 - Prob. 25QCh. 8 - Prob. 26QCh. 8 - Prob. 27QCh. 8 - Prob. 28QCh. 8 - Prob. 29QCh. 8 - Prob. 30QCh. 8 - Prob. 31QCh. 8 - Prob. 32QCh. 8 - Prob. 33QCh. 8 - Prob. 34QCh. 8 - Prob. 35QCh. 8 - Prob. 36QCh. 8 - Prob. 37QCh. 8 - Prob. 38QCh. 8 - Prob. 39QCh. 8 - Prob. 40QCh. 8 - Prob. 41QCh. 8 - Prob. 42QCh. 8 - Prob. 43QCh. 8 - Prob. 44QCh. 8 - Prob. 45QCh. 8 - Prob. 46QCh. 8 - Prob. 47QCh. 8 - Prob. 48QCh. 8 - Prob. 49QCh. 8 - Prob. 50QCh. 8 - Prob. 51QCh. 8 - Prob. 52Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How can a planet’s atmosphere affect the width of the habitable zone in its planetary system?arrow_forwardHow is a habitable zone likely to change over time? a. get narrower b. move further from the star c. they aren't likely to changearrow_forwardA newly discovered orange dwarf star has a surface temperature of approximately 5185 K. How far would its Goldilocks Zone be from the star if an astrologist wanted to look for potentially habitable planets? And how wide would the zone be?arrow_forward
- A radio broadcast left Earth in 1911. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.20. How many possible planets with life could have heard this signal?arrow_forwardOut of the inner planets in the solar system (Mercury,Venus and Mars), Which do you think is most likely to be colonized? Explain why?arrow_forward7. Complete the table below for the habitability of several solar system planets. Temperature can be hot, moderate, or cold. Amount of atmosphere can be thin, thick, or moderate. Liquid wa- ter amount can be lots, little, or none. Planet Venus Temperature Liquid Water Atmosphere Earth Marsarrow_forward
- Today, the largest radio telescope in the world is located in Puerto Rico Russia China Australia To be considered habitable, a planet must have an alien civilization living on it the right temperature for liquid water on the surface the right conditions for human explorers to be able to survive a very large iron corearrow_forwardTutorial A radio broadcast left Earth in 1925. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.30 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.85. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1925, distance in light years = time since broadcast left Earth. d = tnow - tbroadcast d = light years Submit Skip (you cannot come back)arrow_forwardTutorial A radio broadcast left Earth in 1923. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.40. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1923, distance in light years = time since broadcast left Earth. d = tnow - broadcast d = 97 97 light years Part 2 of 3 Since the radio signal travels in all directions, it expanded as a sphere with a radius equal to the distance it has traveled so far. To determine the number of star systems this signal has reached, we need to determine the volume of that sphere. V, = Vb…arrow_forward
- Out of the inner planets in the solar system (Mercury, Venus and Mar) which do you think is the most likely to be colonized? Explain why?arrow_forwardasap pleasearrow_forwardWhat are the three requirements that scientists believe an environment needs to supply life with in order to be considered habitable?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY