Universe: Stars And Galaxies
Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Concept explainers

Question
Book Icon
Chapter 8, Problem 45Q
To determine

(a)

The Sun’s orbital speed.

Expert Solution
Check Mark

Answer to Problem 45Q

The Sun’s orbital speed is 12.48m/s.

Explanation of Solution

Given:

The radius of the orbit of the Sun is r=742000km.

The orbital period of the Sun is t=11.86years.

Formula Used:

The length of the orbital path of the Sun is given by

C=2πr

The Sun’s orbital speed is given by

v=Ct=2πrt

Calculations:

The Sun’s orbital speed is calculated as

v=2πrt=2π( 742000km× 1000m 1km )( 11.86yrs× 3.15× 10 7 s 1yr )=12.48m/s

Conclusion:

The Sun’s orbital speed is 12.48m/s.

To determine

(b)

The angular diameter of the Sun’s orbit as seen by the astronomer and to check whether the Sun’s motion would be discernible if the alien astronomer is able to measure positions to an accuracy of 0.001arcsec.

Expert Solution
Check Mark

Answer to Problem 45Q

The angular diameter of the Sun’s orbit as seen by the astronomer is 1.484×109m and the small angle is calculated to be 0.0013arcsec, which indicates that the Sun’s motion would barely be discernible if the alien astronomer is able to measure positions to an accuracy of 0.001arcsec.

Explanation of Solution

Given:

The hypothetical planet is orbiting around Vega.

The distance from the Sun is d=25ly.

Formula Used:

The small angle formula is given by

α=D(206265)d

Here, D is the angular diameter.

Calculations:

The angular diameter is calculated as

D=2r=2(742000km× 1000m 1km)=1.484×109m

The small angle is calculated as

α=D( 206265)d=( 1.484× 10 9 m)( 206265)( 25ly× 9.46× 10 15 m 1ly )=0.0013arcsec

Conclusion:

The angular diameter of the Sun’s orbit as seen by the astronomer is 1.484×109m and the small angle is calculated to be 0.0013arcsec, which indicates that the Sun’s motion would barely be discernible if the alien astronomer is able to measure positions to an accuracy of 0.001arcsec.

To determine

(c)

The angular diameter of the Sun’s orbit as seen by the astronomer and to check whether the Sun’s motion would be discernible if the alien astronomer is able to measure positions to an accuracy of 0.001arcsec.

Expert Solution
Check Mark

Answer to Problem 45Q

The angular diameter of the Sun’s orbit as seen by the astronomer is 1.484×109m and the small angle is calculated to be 9×105arcsec, which is very small as compared to 0.001arcsec. This indicates that the Sun’s motion would not be discernible if the alien astronomer is able to measure positions to an accuracy of 0.001arcsec.

Explanation of Solution

Given:

The hypothetical planet is in the Pleiades star cluster.

The distance from the Sun is d=360ly.

Formula Used:

The small angle formula is given by

α=D(206265)d

Here, D is the angular diameter.

Calculations:

The angular diameter is calculated as

D=2r=2(742000km× 1000m 1km)=1.484×109m

The small angle is calculated as

α=D( 206265)d=( 1.484× 10 9 m)( 206265)( 360ly× 9.46× 10 15 m 1ly )=9×105arcsec

Conclusion:

The angular diameter of the Sun’s orbit as seen by the astronomer is 1.484×109m and the small angle is calculated to be 9×105arcsec, which is very small as compared to 0.001arcsec. This indicates that the Sun’s motion would not be discernible if the alien astronomer is able to measure positions to an accuracy of 0.001arcsec.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
If you could visit another planetary system while the planets are forming, would you expect to see the condensation sequence at work, or do you think that process was most likely unique to our Solar System? How do the properties of the extrasolar planets discovered so far affect your answer? Do you expect the most planetary system in the Universe have analogs to our Solar System’s asteroid belt and Kuiper Belt? Would all planetary systems show signs of an age of heavy bombardment? If the solar nebula hypothesis is correct, do you think there are more planets in the Universe than stars? Why or why not?
If Sally could drive a Jetson's flying car at a constant speed of 390.0 km/hr across oceans and space, approximately how long (in years) would she take to drive to a solar system object 8.4 AU away?
consider plutos diameter and mass. (2374)km & (1.303E22kg) and day which is 6.4 dayz long. FIND: 1. please elaborate how would you get the answer to the escappe vel0city from plut0. 2. we would need to find the minimum energy required for an aircraft or ship of some sort with mass (525kg) to escape this planet.. 3. we would also need to find the t0tal energy for a complete orbit around the planet with an airship with a same mass (525) and an altitude of 224 km
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning