Fundamentals of Electromagnetics with Engineering Applications
Fundamentals of Electromagnetics with Engineering Applications
1st Edition
ISBN: 9780470105757
Author: Stuart M. Wentworth
Publisher: Wiley, John & Sons, Incorporated
Question
Book Icon
Chapter 6, Problem 6.20P
To determine

The voltage at both ends of transmission line.

Blurred answer
Students have asked these similar questions
Find the characteristic impedance and signal velocity for a transmission line consisting of two parallel strips with a width ω and a separation d. You can ignore fringing fields by assuming that they are sections of concuctors infinitely wide.
A time domain reflectometer (TDR) of output impedance 50- sends a step voltage down a 50-2 transmission line that is terminated in an unknown resistive load and displays the voltage at the sending end of the line, Figure Q6a. The line's insulating material has a relative permittivity, &= 2.25. Determine: Q6 (a) (i) the source voltage of the TDR, (ii) the length of the line, and (iii) the load resistance. V(0,t) 6 V- 3 V- 12 us Figure Q6a (b) The TDR in part (a) is now connected to a metre-long 50 Q transmission line which is terminated in a load of 100 N. Calculate and sketch the voltage at the source for timet = 0 to t = 15 ns, given that the velocity of propagation on the line is 2 x 10 m/s.
will P6.10. Time-domain analysis of a transmission-line system for a rectangular pulse excitation. For the system of Problem P6.8, assume that the voltage source is of 0.3 us duration instead of being of infinite duration. Find and sketch the line voltage and line current versus z for t = 1.2 μs and t = 3.5 μs. S t=0 90 Ω Vg(t) FIGURE From problem 6.8 For Problem 6.10 z= 0 Z₁ = 6002 T= 1 μs 180 Ω z=1

Chapter 6 Solutions

Fundamentals of Electromagnetics with Engineering Applications

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,