Fundamentals of Electromagnetics with Engineering Applications
Fundamentals of Electromagnetics with Engineering Applications
1st Edition
ISBN: 9780470105757
Author: Stuart M. Wentworth
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 6.10P

A coaxial cable has a solid copper inner conductor of radius a = 1 mm and a copper outer conductor of inner radius b. The outer conductor is much thicker than a skin depth. The dielectric has ε r =2 .26 and σ eff = 0.0002 at 1 GHz. Letting the ratio b/a vary from 1.5 to 10, generate a plot of the attenuation (in dB/m) versus the line impedance. Use the lossless assumption to calculate impedance.

Blurred answer
Students have asked these similar questions
3. Coaxial cable is used in applications requiring the propagation of high-frequency signal. Such cable consists of a solid conducting cylinder as the inner conductor and a solid conducting cylindrical shell as the outer conductor. A dielectric fills the region between these conductors. Consider the RG-59/U coaxial cable that is commonly used to connect a television/internet equipment. It has an inner conductor with a diameter of 0.584 mm, dielectric filler with a dielectric constant of K = 1.20, and an outer conductor with an inner diameter of 3.7084 mm. Assuming that these conductors are very long, calculate the capacitance per metre of the RG-59/U coaxial cable. Include a derivation of an equation for the capacitance per unit length of the coaxial cable and then use this equation to calculate your answer. (As discussed in class, assign a charge +Q and voltage V to the inner conductor and a charge -Q and 0 V to the outer conductor, solve for the voltage V, and then compute the…
A coaxial cable is 10 meters long, and is filled with lossless Teflon, having a relative permittivity of 2.1. There is a matched load at the end of the line (this means that there is no reflection at the end, so there is only a signal traveling in the + z direction). At the input of the line, a sawtooth waveform is applied, having a peak voltage of 1.0 [V] and a duration of 1.0 [ns] (the time from the beginning of the waveform until the end). Make a plot (versus time) of what an oscilloscope would read if it were connected to the line at various locations, corresponding to the following values of z: 0.0 [m], 1.0 [m], 5 [m], 10 [m]. Plot out to 50 [ns] 1
An antenna with a radiation resistance of 48 ohms, a loss resistance of 2 ohms, and a reactance of 50 ohms is connected to a generator with open-circuit voltage of 10 V and internal impedance of 50 ohms via a N4-long transmission line with characteristic impedance of 100 ohms. The power radiated by the antenna is ..... .. 0.1384w 0.1384dB 0.148dB 0.148w

Chapter 6 Solutions

Fundamentals of Electromagnetics with Engineering Applications

Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Demos: Dielectric breakdown; Author: Caltech's Feynman Lecture Hall;https://www.youtube.com/watch?v=2YrHh1ikefI;License: Standard Youtube License