Becker's World of the Cell (9th Edition)
Becker's World of the Cell (9th Edition)
9th Edition
ISBN: 9780321934925
Author: Jeff Hardin, Gregory Paul Bertoni
Publisher: PEARSON
Question
Book Icon
Chapter 6, Problem 6.12PS
Summary Introduction

To derive: The Michaelis-Menten equation for the enzyme-catalyzed reaction in which substrate is converted into product.

Introduction: For any emzyme-catalysed reaction, the reaction proceeds by the conversion of substrate into product with an enzyme-substrate intermediate. Most of these reactions follow Michaelis-Menten equation for enzyme kinetics.

Blurred answer
Students have asked these similar questions
molecule A Plot of velocity versus substrate B Lineweaver-Burk plot 1/v Km 1 Vmax (S) Vmx 1 V max 1/2Vmax 1/Vmax -1/Km Km [S] 1/[S] fppt.com molecule Exercise The following data describe an enzyme-catalyzed reaction. Plot these results using the Lineweaver-Burk method, and determine values for KM and Vinax- The symbol mM represents millimoles per liter; 1 mM = 1 × 10 3 mol L. (The concentration of the enzyme is the same in all experiments.) Velocity (mM sec-) Substrate Concentration (тм) 2.5 0.024 5.0 0.036 10.0 0.053 15.0 0.060 20.0 0.061 fppt.com
not true about the Michaelis-Menten equation? The equation that gives the rate, v, of an the substrate concentration [S] is the Michaelis-Menten equation = Vmax[S]/(Km + [S]), where V, enzyme-catalyzed reaction for all values of max and Km are constants. Which of the following is a) for [S] << Km, V = Vmax applies to most enzymes, but allosteric enzymes have different kinetics when [S] = Km, then v = Vmax/2 gives the rate when the enzyme concentration, temperature, pH, and ionic strength are constant for very high values of [S], v approaches Vmax e) Which is correct about the constant Km in the Michaelis-Menten equation? also called the catalytic constant or turnover number equal to the number of product molecules produced per unit time when the enzyme is saturated with substrate it is the constant in the first order rate equation v = k[A] it is the constant in the second order rate equation v = equal to the substrate concentration at which the velocity or rate of a reaction is ½ the…
6-25 substrate-band enzyme concentrations. The the turnover number is equal to umax- b) V=Umax •57(Km+S) anstont For an enzyme that displays Michaelis-Menten kinetics, what is the reaction velocity, V (as a percentage of Vmax), observed at the following values? a) [S] = KM C) d) e) [S] = 0.5KM [S] = = 0.1KM [S] = 2KM [S] = 10KM w reactores -maximumrate of reaction boteles conc. Would you expect the structure of a competitive inhibitor of a given enzyme to be similar to that of its substrate?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Biochemistry
    Biochemistry
    ISBN:9781305577206
    Author:Reginald H. Garrett, Charles M. Grisham
    Publisher:Cengage Learning
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning